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Abstract: We consider general field theories in six dimensions, with two of the dimensions

compactified on a T2/Z4 orbifold. Six-dimensional Weyl fermions propagating on this back-

ground give rise to a chiral zero-mode, which makes them interesting for phenomenological

applications. The compact two-dimensional space is flat and has three conical singulari-

ties. We consider the one-loop structure of these theories, and show that the presence of

logarithmic divergences requires the introduction of counterterms precisely at these three

singular points. We also show that the corresponding localized operators are rotationally

symmetric in the plane of the two extra dimensions, as expected from the geometry about

the singularities. We derive the propagators for spin-0, spin-1/2 and spin-1 fields in mo-

mentum space, in such a way that the appropriate boundary conditions are satisfied. This

allows us to efficiently calculate loop diagrams in any given model. We give general expres-

sions for the mass splittings among Kaluza-Klein modes within a given level. Our results

can also be used to obtain interesting KK-parity preserving interactions among Kaluza-

Klein modes. We pay special attention to the components of six-dimensional gauge fields

that transform as scalars under the four-dimensional Lorentz group. These states provide

a characteristic signature for these scenarios. In particular, we find that they can easily be

the lightest particles in the Kaluza-Klein spectrum.
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1. Introduction

Recent years have seen a surge of interest in theories with extra dimensions. This is due,

in part, to their potential to explain various unanswered questions in the standard model

of particle physics. A second, no less important, reason is that many of these theories are

amenable to verification or falsification in the next decade. Our ability to see the new

physics and identify it as coming from a higher dimensional structure depends sensitively

on which fields can probe the extra dimensions.

One of the most straightforward extensions of the standard model is the assumption

that all standard model particles propagate in more than four dimensions, also called Uni-

versal Extra Dimensions or UED’s. The additional dimensions are compact and would

manifest themselves in Kaluza-Klein (KK) towers associated with each and every standard

model field. These scenarios naturally contain a dark matter candidate, which can account

for the observed dark matter energy density provided the compactification scale is around

the electroweak (EW) scale [1]. The six-dimensional case has a number of additional at-

tractive properties. The requirements of anomaly cancellation and fermion mass generation

lead to the prediction that the number of fermion generations is a multiple of three [2].

Also, an exact discrete symmetry of the compactified theory provides a natural explanation

for the stability of matter, even if baryon number is violated near the EW scale [3]. In

addition, neutrinos are predicted to be Dirac fermions [4]. Six-dimensional theories have

also been considered in [5].

The phenomenology of the UED scenarios is rather interesting, and the five-dimen-

sional case has received considerable attention [6]. The interactions arising from bulk

operators preserve KK-number, which is closely related to momentum conservation in the

extra dimensions. An important consequence is that the heavy modes can only be pair

produced by such interactions and the effective low-energy theory is simply the standard

model, up to loop effects. As a result, the bounds on the compactification scale are of

order a few hundred GeV [7], and the KK states can be accessible in high-energy collider

experiments. It is essential to notice that a successful phenomenology can only be obtained

when the compact space contains singularities, that allow for a chiral low-energy theory.
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Such singularities can support operators that induce couplings among the KK modes not

induced by the bulk interactions [8]. Equally important is the fact that these operators give

the leading contribution to the mass splittings among the states within a given KK level.

For these reasons, the localized operators are essential in determining the phenomenology of

these scenarios. Other studies emphasizing the role of localized terms in extra dimensional

scenarios have appeared in [9].

In this paper we consider field theories in six dimensions. Our aim is to understand

in detail the quantum structure of these theories, in particular with regard to operators

localized at the singular points. We assume a flat spacetime background and that two of

the six dimensions are compactified on a “chiral square”, as described in [10, 11]. Related

studies have appeared in [12, 14]. The chiral square compactification has the following

simple description: starting from a two dimensional square region, adjacent sides of the

square are identified in pairs. This can be contrasted with the torus construction where

opposite sides are identified. The “chiral” square has the topology of a two-dimensional

sphere, but the “curvature” is localized at three conical singularities. We will assign them

coordinates (x4, x5) = (0, 0), (L,L) and (0, L) ∼ (L, 0). The first two singularities have a

deficit angle of 3π/2, while the latter has a deficit angle of π. These conical singularities

play an important role in determining the physics of these scenarios.

Fields propagating on the chiral square background can belong to four different classes,

that may be characterized by the boundary conditions imposed on the sides of the funda-

mental square region:

Φ(xµ, y, 0) = einπ/2Φ(xµ, 0, y) , n = 0, 1, 2 or 3 , (1.1)

where xµ are coordinates for the non-compact dimensions and 0 ≤ y ≤ L parametrizes

one pair of identified sides of the square. A similar condition holds for the second pair

(see Ref. [10] for further details). In addition, the derivatives normal to the “edges” of the

square satisfy the “smoothness” condition

∂5Φ|(x4,x5)=(y,0) = −einπ/2 ∂4Φ|(x4,x5)=(0,y) . (1.2)

We will label the four classes of fields by the integer n, appearing in eq. (1.1), that charac-

terizes the boundary conditions. It is understood that n is defined modulo 4. Notice that

only those fields that satisfy boundary conditions corresponding to n = 0 admit a zero-

mode, with an associated flat profile. Furthermore, when considering 6D Weyl fermions,

Ψ± [we use + and − to label the 6D chiralities and reserve left and right to refer to the

4D chiralities], one finds that their 4D left- and right-handed chiralities obey boundary

conditions corresponding to integers that differ by one: n±
L − n±

R = ±1, where the sign de-

pends on the 6D chirality of the fermion in question. Hence, fermions propagating on this

space naturally lead to a chiral low-energy theory: at most one of the left- or right-handed

chiralities has a zero mode. This compactification is equivalent to a T 2/Z4 orbifold [10].1

1There is a second category of fields satisfying “twisted” boundary conditions that never give rise to a

zero-mode, but we do not consider them here. In the orbifold construction, this corresponds to starting

with a “torus” with anti-periodic identifications, before moding out by the discrete Z4. See [10] for further

details.
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Gauge fields propagating in six dimensions give rise to 4-dimensional spin-1 fields plus

two scalar states per KK level. One linear combinations of these scalar states becomes

the longitudinal polarization of the massive spin-1 fields, while the orthogonal combination

remains as an additional scalar degree of freedom. This last phenomenon only occurs in six

or higher dimensions, and the observation of such scalar states in the adjoint representation

of the gauge group may be taken as a signature of the present class of scenarios. Following

Ref. [11], we refer to them as “spinless adjoints”.

Another important property of these theories is that one can impose a Kaluza-Klein

or KK-parity, defined on KK modes by

Φ(j,k)(xµ) 7→ (−1)j+k Φ(j,k)(xµ) , (1.3)

where Φ stands for a field of any spin, and j, k are integers labeling the KK level. The

KK-parity has a geometrical interpretation as a rotation by π about the center of the chiral

square.

It is important to keep in mind that higher dimensional field theories should be regarded

as effective theories with a cutoff Λ, above which a more fundamental UV completion is

required. Integrating out the (unknown) physics at the scale Λ determines, in principle,

the coefficients of various operators through a matching calculation. Of course, even if we

knew the UV completion, such a calculation could be in practice very difficult to perform.

Therefore, in the spirit of effective theories, we simply allow for all operators consistent

with the “low-energy” symmetries, and regard their coefficients as free parameters to be

determined, if possible, by experiment.

The operators one can write fall in two distinct classes. Bulk operators, such as

the kinetic terms for the various bulk fields or the associated gauge interactions, and

operators localized at the three singular points mentioned above. The renormalization

program for these scenarios requires localized counterterms to absorb divergences in the

quantized theory. In fact, we will see by an explicit computation that the necessary localized

counterterms reside precisely at the conical singularities, and have the structure

[

δ(x4)δ(x5) + δ(L − x4)δ(L − x5)
]

O1 + δ(x4)δ(L − x5)O2 . (1.4)

The fact that the operators at (0, 0) and (L,L) have identical coefficients is a consequence

of KK-parity. Localized operators at (0, L) have coefficients that are, in general, unrelated

to those on the previous two conical singularities. Therefore, in the 6D theory, each type

of localized operator is characterized by two parameters. This should be contrasted with

the 5D case, where a single parameter per operator is sufficient (assuming KK-parity).

The operators appearing in Oi have dimensionful coefficients, suppressed by the scale

Λ. The most important ones are those with the lowest dimensionality. These are kinetic

terms such as

Oi = −1

4
r̂i
AFµνFµν +

r̂i
Ψ

Λ2
iΨΓµDµΨ + · · · , (1.5)

where Fµν is the field strength of a generic gauge field, and Ψ stands for a generic 6D fermion

(we do not indicate the 6D chirality). We are assuming that the gauge bulk kinetic term
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operator has a coefficient −1/(4g2
6), where g6 is the 6D gauge coupling constant with mass

dimension -1, so that the gauge field has mass dimension 1, as in four dimensions. We also

defined dimensionless coefficients r̂i
A and r̂i

Ψ, with i = 1, 2.

The operators in eq. (1.5) are very important in determining the physics of these

scenarios. They give the leading contributions to the mass splittings within states in a

given KK-level. They also induce interactions among KK modes that do not arise from

bulk operators. In fact, the interactions among KK-modes induced by bulk operators

satisfy well defined rules that follow from the integrals over the extra dimensional space of

the KK-mode wavefunction profiles. These “tree-level” selection rules are closely related

to momentum conservation in the extra dimension, except that a reversing of momentum

is allowed and the momenta along the two compact dimensions can be interchanged. We

refer to these type of interactions as “KK-number” preserving. Interactions arising from

localized operators, on the other hand, lead to KK-number violating transitions, which are

of great phenomenological interest [6, 15]. The only constraint is that they should satisfy

the KK-parity symmetry of eq (1.3).

It is clearly very important to have an idea of how large the corresponding mass

splittings and KK-number violating couplings are. As mentioned before, the values of the

dimensionless coefficients in eq. (1.5) at the scale Λ should be taken as free parameters.

However, the values that are relevant to answer the previous question are those at the

scale of the corresponding KK state, which is in general lower than Λ. Those values can be

found by renormalization group (RG) evolution, with the “bare” coefficients at the scale

Λ providing the initial conditions. The RG running is determined by the physics below

Λ. Furthermore, it leads to a logarithmic enhancement, so that one can expect the “low-

energy” contribution to dominate over the “bare” one.2 To the extent that the logarithm

is sufficiently large, the size of the dimensionless coefficients is set by the physics below Λ.

In this paper, we will calculate the contribution associated with the KK-modes below

Λ at one-loop order. It is natural to ask to what extent one can trust the results of a

one-loop calculation. To answer this question, it is necessary to be more specific about

how to choose the cutoff scale of the theory. A conservative approach is to identify the

cutoff Λ with the lowest scale where perturbativity is lost in some sector of the theory. For

example, if the field content is that of the standard model, and the 4D effective low-energy

theory is identified with the standard model, Λ is the scale at which the SU(3)C gauge

interactions get strong. To be more precise, we define strong coupling to correspond to the

case where the loop expansion breaks down. That is, all loop orders are equally important

and there is no small expansion parameter. This criterion provides a way of estimating

the dimensionless coefficients of any operator in the theory, when they are expressed in

terms of the cutoff scale Λ, following the rules of Naive Dimensional Analysis or NDA [16].

In extra dimensional theories, the possibility of having operators localized on subspaces of

reduced dimensionality requires an extension of the NDA rules as first studied in [17].

However, in practical situations there are additional interactions that are weak at the

2Of course, in many instances the separation between the cutoff and KK scales may be of order 10, so

that the log may be of order just a few.
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scale Λ, e.g. gravitational or the electroweak and Yukawa interactions (other than those

associated with the top quark). Loops involving such interactions have a natural expansion

parameter in terms of the corresponding coupling. It is also natural to assume that bare

operators involving, say, only particles interacting through electroweak interactions, have

a corresponding suppression. This comments also hold for flavor violating transitions that

are suppressed in the standard model. At any rate, based on phenomenological constraints,

such an assumption about the size of the coefficients of certain operators induced by the

UV completion seems necessary. As long as the assumption is technically natural, in the

sense that said size is of the order of loop effects, we are willing to take it as part of the

definition of the scenarios we are interested in.

In the absence of a known UV completion for the kind of theories we study here, we

assume that the order of magnitude of the coefficients of bulk and localized operators are

no larger than the loop induced effects. For the strongly interacting sector, this agrees with

the NDA rules. For weakly interacting particles our assumption amounts to the statement

that the size of the bare coefficients, induced by the physics that was integrated out at the

scale Λ, is no larger than the effects of the physics in the theory below Λ, which is well

approximated by the lowest order term in the loop expansion.

Thus, there are two qualitatively different cases: for particles that interact strongly,

the best one can hope for is to estimate the size of the coefficients of local operators in the

higher dimensional theory. The one-loop contribution to localized operators such as those

in eqs. (1.4) and (1.5) for the case of quarks and gluons can only be taken as indicative

of the order of magnitude of the effect. Higher orders in the loop expansion give equally

important contributions. On the other hand, for weakly interacting particles one can hope

that the one-loop computation is a good approximation and that the corresponding effects

are under control.

There are also finite one-loop effects that contribute to the mass splittings as well

as to the KK-number violating interactions. Some of the finite contributions to the mass

splittings can be calculated in the context of a simple torus compactification, as done in [6].

These effects are subdominant, not being logarithmically enhanced. However, the finite

contributions to certain KK-number violating interactions can be of phenomenological

interest. We mention here two important cases: the couplings of KK-parity even states to

a pair of zero-mode gauge bosons, and the coupling of KK-parity even spinless adjoints to

a pair of zero-mode fermions.

In the first instance, we notice that the couplings of zero-mode gauge bosons are

rather constrained by the unbroken 4D gauge invariance associated with these massless

spin-1 fields. To be specific, consider the coupling of a (1, 1) KK-gluon to two gluons.

The effective 4D operator must take the form of a product of three field strengths, one

associated with each of the spin-1 fields.3 This effective four-dimensional, KK-number

3Note that after KK decomposition, the cubic terms in the non-abelian gauge kinetic term of eq. (1.5)

naively lead to a vertex between two gluons and a (1, 1) state. However, they also lead to mixing between the

zero-mode and the heavy KK modes. The unbroken 4D gauge invariance insures that this system contains

a massless state. Furthermore, there exists a basis where both kinetic and mass mixings between this state

and the massive ones are absent. Therefore, dimension four operators that would induce a (0, 0)–(0, 0)–(1, 1)
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violating operators can arise from localized operators as in eq. (1.4) with, e.g.,

O1,2 ∼ r̂

23Λ2
G·G·G , (1.6)

where G stands for the gluon field strength and the dots denote appropriate contractions

both for Lorentz and gauge indices. Using NDA to estimate the dimensionless coefficient,

we find r̂ ∼ Nc/l4, where l4 = 16π2, and Nc is the number of colors. Integrating over the

extra dimensions, we find an effective 4D operator

1

23M2
c

(

Mc

Λ

)2 (

Nc

l4

)

G(0,0) ·G(0,0) ·G(1,1) , (1.7)

where we chose the KK scale Mc = 1/R as the mass scale suppressing the operator.

Although the fields are not canonically normalized, the coefficients of the various kinetic

terms are of order 1/g2
4 , where g4 is the observed SU(3)C coupling, which is of order one

at the KK scale. Therefore, the size of the effect can be read directly from eq. (1.7).

The ratio Mc/Λ can be determined by matching the 6D and 4D gauge coupling con-

stants. Neglecting the contribution to the kinetic term from the localized gauge operator

in (1.5), this is simply g2
6/(πR)2 ∼ g2

4 = O(1). Since NDA gives g2
6Λ

2 ∼ l6/Nc, where

l6 = 128π3 is a 6D loop factor, we find (Mc/Λ)2 ∼ Ncπ
2/l6 ∼ Nc/(2l4). This suggests that

operators such as (1.6) are generated at two-loop order. In fact, this is easy to see from

the fact that at one loop only a finite number of states contribute to KK-number violating

operators, and the finiteness follows from the corresponding statement in 4D QCD. At

higher loop order, one encounters infinite KK sums that require the localized counterterms

in eq. (1.6).

Nevertheless, we expect a non-vanishing, finite one-loop induced vertex between a (1, 1)

gluon and two zero-mode gluons. This corresponds to an effective 4D operator as in (1.7),

but without the factor (Mc/Λ)2. This finite effect clearly dominates over the expected

contributions from the physics integrated out at the scale Λ. Although quite interesting

for phenomenological applications, the calculation of such finite effects is beyond the scope

of this work.

The second example we would like to mention is the coupling of the KK-parity even

spinless adjoints to zero-mode fermions. These arise from localized operators in the 6D

theory like4

O1,2 ∼ r̂′

Λ2
Ψ ΓMΓNΓLΨDLGMN , (1.8)

where M,N = 0, 1, . . . , 5 run over the 6-dimensional Lorentz indices, and DL is a gauge

covariant derivative. Again, the NDA estimate corresponds to a two-loop effect, and the

three point vertex is dominated by a finite one-loop contribution. However, unlike the

vertex do not exist.
4Note that the operator iΨ1Γ

MΓNΨ2 GMN has lower dimensionality. However, this operator flips chi-

rality and is forbidden by gauge invariance for the standard model field content, unless Ψ1 = Ψ2, in which

case it does not contain two fermion zero-modes.
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couplings involving zero-mode gauge bosons, the physical coupling between zero-mode

fermions and KK-parity even spinless adjoints receives contributions from ”wavefunction

renormalization” effects at one loop (more precisely, mass and kinetic mixing effects),

which are logarithmically enhanced. These dominant contributions can be obtained from

the results calculated here.

In this paper we compute the one-loop logarithmically divergent contributions to the

localized kinetic terms of scalar, fermion and gauge fields. This allows us to calculate the

leading contributions to the mass splittings and to certain KK-number violating interac-

tions such as those between KK-parity even gauge bosons and zero-mode fermions, which

are of phenomenological interest [15]. Recall that the power-law divergences renormalize

bulk operators and do not induce mass splittings. Our main results for the localized oper-

ators are given in eqs. (5.11), (5.19), (5.40), (5.60), (5.69), (5.80), (5.87), (5.110), (5.111)

and (5.112) in the body of the paper, and are summarized in eqs. (6.4)–(6.7) of our conclu-

sions. We give here the mass shifts for fields of various spins, that can be read from those

localized operators [see also Tables 1, 4 and 9].

In the following expressions, g4 and λ4,i are the 4-dimensional gauge and Yukawa cou-

plings, respectively. C2(F ) is the eigenvalue of the Casimir operator in the representation

of the fields F = Aµ, Ψ or Φ, while Tr(T aT b) = T (F )δab, where T a are the generators in the

representation of the field F . We consider 6D gauge fields which comprise 4D spin-1 and

spin-0 components, 6D Weyl fermions that give rise to a zero-mode of any 4D chirality (we

do not consider fermions satisfying n = 2 boundary conditions), and complex 6D scalar

fields satisfying any of the four boundary conditions n = 0, 1, 2 or 3. The 6D fermions

can have any of the two 6D chiralities, Ψ±. Notice that the Yukawa couplings require the

presence of fermions with opposite 6D chiralities.

The mass-shifts are different for KK-parity even and KK-parity odd states, as a result

of the localized operators at the conical singularity with coordinates (0, L). We obtain:

For KK-parity odd states, ( − 1)j+k = −1:

• Spin-1 fields:

δMA
j,k

Mj,k
=

g2
4

16π2
ln

Λ2

µ2











14

3
C2(A) − 2

3

∑

Ψ

T (Ψ) +
∑

Φ

T (Φ) ×



















−5/12

1/12

3/12

1/12











. (1.9)

• Spinless adjoints:

δMSA
j,k

Mj,k
=

g2
4

16π2
ln

Λ2

µ2











8C2(A) − 4
∑

Ψ

T (Ψ) +
∑

Φ

T (Φ) ×



















13/4

−1/4

−11/4

−1/4











.(1.10)

– 8 –



J
H
E
P
1
1
(
2
0
0
6
)
0
1
8

• Spin-1/2 fields:

δM
Ψ+

j,k

Mj,k
=

1

16π2
ln

Λ2

µ2











4
∑

gauge

g2
4C2(Ψ) +

∑

i

|λ4,i|2 ×



















5/8

7/8

−3/8

−9/8











. (1.11)

For chirality − fermions, Ψ−, the second and fourth lines are exchanged.

• Spin-0 fields:

δ
(

MΦ
j,k

)2

M2
j,k

=
1

16π2
ln

Λ2

µ2











∑

gauge

g2
4C2(Φ) ×



















15/4

15/4

7/4

15/4

+
∑

i

|λ4,i|2 ×



















2

0

0

0











.(1.12)

In the equations for the spin-1 fields and spinless adjoints the sums run over 6D Weyl

fermions, Ψ±, that give rise to a zero-mode. The four lines in the sums over the complex

6D scalars, Φ, list the results for scalars obeying n = 0, 1, 2 and 3 boundary conditions,

in that order. The terms proportional to C2(A) include the contributions of the complete

6D gauge multiplet, i.e. both the 4D spin-1 components, as well as the spinless adjoints.

The sums in the equation for the fermions are over its gauge interactions, and Yukawa

interactions with scalars obeying any of the four types of boundary conditions. Similar

comments apply to the mass-shift of scalars. In this latter case, the four lines refer to

the boundary conditions obeyed by the corresponding scalar, ordered as mentioned above.

When the scalar satisfies n = 0 boundary conditions [first line in eq. (1.12)], there is also a

localized bare mass contribution [see eq. (6.11)]. In these formulae, µ is the renormalization

scale, and should be taken of the order of the scale of the corresponding KK state, e.g. the

tree-level mass Mj,k =
√

j2 + k2/R.

For KK-parity even states, ( − 1)j+k = +1:

• Spin-1 fields:

δMA
j,k

Mj,k
=

g2
4

16π2
ln

Λ2

µ2











17

3
C2(A) − 2

3

∑

Ψ

T (Ψ) +
∑

Φ

T (Φ) ×



















−1/2

1/6

1/6

1/6











.(1.13)

• Spinless adjoints:

δMSA
j,k

Mj,k
=

g2
4

16π2
ln

Λ2

µ2











9C2(A) − 4
∑

Ψ

T (Ψ) +
∑

Φ

T (Φ) ×



















7/2

−1/2

−5/2

−1/2











. (1.14)
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• Spin-1/2 fields:

δM
Ψ+

j,k

Mj,k
=

1

16π2
ln

Λ2

µ2











5
∑

gauge

g2
4C2(Ψ) +

∑

i

|λ4,i|2 ×



















3/4

3/4

−1/4

−5/4











. (1.15)

For chirality − fermions, Ψ−, the second and fourth lines are exchanged.

• Spin-0 fields:

δ
(

MΦ
j,k

)2

M2
j,k

=
1

16π2
ln

Λ2

µ2











∑

gauge

g2
4C2(Φ) ×



















11/2

15/4

0

15/4

+
∑

i

|λ4,i|2 ×



















2

1

0

1











.(1.16)

For scalars satisfying n = 1 or n = 3 boundary conditions (second and fourth lines),

the Yukawa contribution given here applies when both 6D fermions in the loop give

rise to a zero-mode. If only one of the fermions contains a zero-mode, the Yukawa

contribution has the opposite sign [see subsection 5.3.3 for more details].

A nontrivial check of the previous mass-shift formulae can be obtained by considering

a supersymmetric theory. As a first example, consider supersymmetric (SUSY) QCD in six

dimensions. This theory contains a 6D gauge field and a 6D Weyl fermion. For concreteness

assume that the fermion has 6D + chirality, Λ+, and that it gives rise to a left handed zero-

mode. In 4D, N = 1 language these fields arrange themselves into a vector multiplet, V =

(Aµ, λ+L), and a chiral multiplet, H = (A−, λc
+R), where A± = A4 ± iA5 are the spinless

adjoints, and Λ+ = λ+L + λ+R. The boundary conditions break the higher dimensional

supersymmetry down to 4D, N = 1 SUSY: V satisfies n = 0 boundary conditions, while H

satisfies n = 1 boundary conditions. Therefore, the above formulae should predict that Aµ

and λ+L present the same mass-shift, as well as A+ and λ+R. Actually, since at each KK

level λ+L and λ+R combine into a Dirac fermion, the complete 4D, N = 2 supermultiplet

should present the same mass-shift, a fact that is easy to check from eqs. (1.9)–(1.11) [and,

independently, from eqs. (1.13)–(1.15)]. One can also check some of the terms coming from

the Yukawa interactions by adding a hypermultiplet, i.e. a 6D Weyl spinor, Ψ−, assumed

to have a left-handed zero-mode, and two complex 6D scalars, Φ and Φc. In 4D, N = 1

language these decompose into two chiral multiplets, Q = (Φ, ψ−L) and Qc = (Φc, ψc
−R),

where Ψ− = ψ−L + ψ−R. Now Q satisfies n = 0 boundary conditions, while Qc satisfies

n = 3 boundary conditions. In the SUSY limit, the gauginos interact with the scalars and

fermions in the hypermultiplet with Yukawa couplings of strength λ4 =
√

2g4. Taking this

into account, the mass-shifts for the KK parity odd gauge bosons, gauginos and spinless

adjoints are all proportional to 4C2(A)−T (Q). Similarly, the mass-shifts for the KK-parity

even states are proportional to 5C2(A)−T (Q). To check that the fermion and scalar fields

in the hypermultiplet present a common mass-shift requires inclusion of the effects from

the trilinear and quartic scalar self-interactions in the scalar mass formulae, which we have
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not computed. Nevertheless, the mass-shift for the hypermultiplet can be obtained from

the fermion mass-shift formulae given above.

Notice that there are a couple of qualitative differences compared to the mass shifts one

obtains in a 5-dimensional theory. First, in 6D the fermions give a negative contribution to

the masses of the gauge bosons, whereas in 5D the fermion contribution vanishes as a result

of a cancellation between the left- and right-handed components of the 5D Dirac fermion [6].

In the 6-dimensional case, one can trace the surviving contribution to the existence of

additional states. For example, the mass shift of the (2, 0) state, which plays a role akin to

the second level states in 5D, receives no contribution from (1, 0) states due to a cancellation

similar to the 5D case, but it receives a contribution from the (1, 1) states, which have no

analog in 5D. A second difference is related to the Yukawa contributions to the fermion

masses, due to couplings to scalars with a zero-mode: in 5D such a contribution is negative,

but in 6D it is found to be positive. The positive sign is special to six dimensions, and

originates in the existence of two 6D chiralities. The Yukawa coupling necessarily involves

two fermions of opposite 6D chiralities, and this translates into a relative physical phase

that accounts for the previous result. Finally, one can also see that the spinless adjoints

receive a negative contribution from their gauge interactions with the fermions, as do the

gauge bosons. However, the coefficient in the spinless adjoint formula is larger than for the

gauge bosons. As a result, the spinless adjoints are lighter than their spin-1 counterparts.

This may have interesting consequences for dark matter, since the lightest KK particle, in

the 6D standard model context, is the hypercharge spinless adjoint. It can also affect the

collider phenomenology in an interesting way [15].

The general formulae eqs. (1.9)–(1.16) can be easily applied to various models of in-

terest. As explained before, when applied to strongly interacting particles they should be

taken only as indicative of the order of magnitude of the effect. However, when applied

to weakly interacting particles they should reliably give the leading contribution to the

corresponding mass shifts.

This paper is organized as follows: in Section 2 we develop the technical ingredients

that are necessary to perform the one-loop computation. This requires finding propagators

that encode correctly the boundary conditions implied by eqs. (1.1) and (1.2). We do so

in the context of a scalar field theory. We then give the propagators for fermion fields

(Section 3) and gauge fields (Section 4). The latter include both the spin-1 and spin-0

components (under the 4D Lorentz group), as well as the ghost fields. Section 5 contains

our main results. We compute the one-loop corrections to the gauge boson two-point

function in Subsection 5.1, to the fermion two-point function in Subsection 5.2, to the

scalar two-point function in Subsection 5.3, and to the two-point functions of the “spinless

adjoints” in Subsection 5.4. We summarize and conclude in Section 6. We also include

two appendices. In Appendix A we give details on how to relate the KK-number and

momentum space representations of the propagators. In Appendix B we give details of the

derivation of the 6D propagators associated with fermion and 6D gauge fields, propagating

on the chiral square background.
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2. The scalar case: generalities

Our first goal is to develop the tools necessary to perform loop calculations in an effi-

cient manner. One approach would be to decompose the bulk fields into a set of Kaluza-

Klein modes satisfying the appropriate boundary conditions, and derive the effective four-

dimensional theory to read the relevant vertices (given by integrals over KK wavefunctions).

These can then be used to calculate any quantity of interest. An alternative approach is

to work in momentum space in the extra dimensions, and include the correlations arising

from the boundary conditions in the form of the propagators. This latter approach has the

advantage that the effects of the boundary conditions appear only in the propagators, and

are therefore universal. The vertices conserve momentum in the standard sense and can

be read as in the T 2 compactification. We adopt the second approach since it is simpler

to generalize to various types of interactions. The first step is then to understand how to

encode the boundary conditions in the form of the propagators.

We start by deriving some useful general relations in the context of a scalar field theory.

We first write down the general expression for the scalar propagator in “Kaluza-Klein

space”, where the boundary conditions are manifest. We can then use this representation

as a starting point for deriving the momentum space expression of the propagator, that

correctly includes the effects of the boundary conditions. We also discuss the generalizations

needed in the presence of Kaluza-Klein mixing. This will allow us to understand the

structure of the propagator when radiative effects are included.

2.1 Propagators and boundary conditions

We start from the KK expansion of a 6-dimensional scalar field

Φn(xµ; z) =
1

L

∑

j,k

′
φ(j,k)(xµ)f (j,k)

n (z) , (2.1)

where we use the shorthand notation z = (x4, x5). These coordinates range over the

fundamental square 0 ≤ x4, x5 ≤ L. The KK wavefunctions, f
(j,k)
n (z), satisfy the boundary

conditions appropriate for the “chiral square”, as derived in Ref. [10]. They may be written

as

f (j,k)
n (z) =

1

2(1 + δj,0δk,0)

[

h(j,k)(z) + eiθh(k,−j)(z) + e2iθh(−j,−k)(z) + e3iθh(−k,j)(z)
]

,

(2.2)

in terms of the momentum space wavefunctions

h(j,k)(z) = ei(jx4+kx5)/R , (2.3)

where R = L/π, and θ = nπ/2 with n = 0, 1, 2, 3. The integer n labels the possible con-

sistent boundary conditions that result after imposing the folding identifications described

in [10]. Notice that the KK towers contain a zero-mode only for n = 0. The ′ superscript

in the summation in eq. (2.1) indicates that the KK sums run over the restricted range

j > 0, k ≥ 0 and j = k = 0.
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Given the KK wavefunctions and spectrum, we can immediately write down the ex-

pression for the propagator. It is convenient to work in configuration space in x4, x5,

since this will allow us to easily project onto KK-number or momentum space as needed.

However, we do work in momentum space for the four non-compact dimensions from the

beginning, i.e. we use a mixed position and momentum space representation. The general

representation of the scalar propagator in the compactified theory is

Gn(p; z; z′) =

∫

d4x eipx〈Φn(x; z)Φ†
n(0; z′)〉

=
1

L2

∑

j,k

′
gj,k
S f (j,k)

n (z)
[

f (j,k)
n (z′)

]∗

, (2.4)

where gj,k
S is the 4-dimensional scalar propagator (in the KK-number representation)

gj,k
S =

i

p2 − M2
j,k

, (2.5)

and in the present case the spectrum is given by

M2
j,k =

j2 + k2

R2
. (2.6)

In fact, this propagator satisfies

(p2 + ∂2
4 + ∂2

5)Gn(p; z; z′) = i δ(2)(z − z′) , (2.7)

since

(∂2
4 + ∂2

5 + M2
j,k)f

(j,k)
n (z) = 0 , (2.8)

and the f
(j,k)
n (z) form a complete set for functions satisfying the appropriate boundary

conditions:5

1

L2

∑

j,k

′
f (j,k)

n (z)
[

f (j,k)
n (z′)

]∗

= δ(2)(z − z′) . (2.9)

It is also worth keeping in mind the orthonormality relations

1

L2

∫ L

0
d2z f (j,k)

n (z)
[

f (j′,k′)
n (z)

]∗

= δj,j′δk,k′ , (2.10)

which ensure the canonical normalization of the KK fields, φ(j,k)(xµ).

5If one wants to interpret eq. (2.9) outside the fundamental region 0 ≤ x4, x5
≤ L, the δ-function on its

r.h.s. should be extended in a manner consistent with the relevant boundary conditions, e.g. δ(2)(R(z)−z′) =

e−inπ/2δ(2)(z − z′), δ(2)(z − R(z′)) = einπ/2δ(2)(z − z′) and δ(2)(R(z) − R(z′)) = δ(2)(z − z′), where R

stands for a counterclockwise rotation by π/2 in the z-plane. It should also be extended periodically, with

period 2L along both x4 and x5, outside −L ≤ x4, x5 ≤ L.
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2.2 Propagators in momentum space

Now suppose we want to work in momentum space, as opposed to KK-number space, in

the compactified dimensions: (p4, p5) = (m/R, l/R), where m and l are arbitrary integers,

i.e. we define

G(m,l;m′,l′)
p,n ≡

(

1

2L

)2 ∫ L

−L
d2z d2z′ei(p4x4+p5x5)e−i(p′4x′4+p′5x′5)Gn(p; z; z′) . (2.11)

Note that we are letting the integration run over the extended range −L ≤ x4, x5 ≤ L;

it is understood that Gn(p; z; z′) has been analytically continued outside the fundamental

region 0 ≤ x4, x5 ≤ L. The factor of (1/2L)2 was introduced so that G
(m,l;m′,l′)
p,n has mass

dimension −2, as in four dimensions.

By using the representation of the propagator given in eq. (2.4) we automatically obtain

from eq. (2.11) the momentum space representation satisfying the appropriate boundary

conditions. In switching from KK-number to momentum space one encounters the integrals

1

4L2

∫ L

−L
d2z

[

h(m,l)(z)
]∗

f (j,k)
n (z) =

1

2 [1 + δj,0δk,0]
δ̂(m, l; j, k;n) , (2.12)

where we used the explicit form of the KK wavefunctions given in eq. (2.2), as well as the

orthonormality relations

1

4L2

∫ L

−L
d2z h(m,l)(z)

[

h(m′,l′)(z)
]∗

= δm,m′δl,l′ , (2.13)

that hold for the standard plane waves given in eq. (2.3). We also defined a “generalized”

Kronecker delta

δ̂(m, l;m′, l′;n) = δm,m′δl,l′ + eiθδm,l′δl,−m′ + e2iθδm,−m′δl,−l′ + e3iθδm,−l′δl,m′ , (2.14)

where θ = nπ/2. Note that when the quantum numbers m, l,m′, l′ are all taken positive,

eq. (2.14) coincides with the standard two-dimensional Kronecker delta. The additional

terms take into account the boundary conditions and depend on the integer n. How-

ever, note also that for the case of the zero-mode (which only arises for n = 0) one has

δ̂(m, l; 0, 0;n = 0) = 4δm,0δl,0, with an extra factor of 4.

2.2.1 Diagonal propagators

For a propagator with the general representation in KK-number space,

Gn(p; z; z′) =
1

L2

∑

j,k

′
gj,k f (j,k)

n (z)
[

f (j,k)
n (z′)

]∗

, (2.15)

we can also write

Gn(p; z; z′) =
1

4L2

∑

m,l

∑

m′,l′

G(m,l;m′,l′)
p,n h(m,l)(z)

[

h(m′,l′)(z′)
]∗

, (2.16)
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with G
(m,l;m′,l′)
p,n as defined in eq. (2.11). Notice that the sums in eq. (2.16) run over all

integers. We will reserve the labels m and l to denote the momentum along the compact

dimensions in units of 1/R, hence running unrestricted over integer values, while leaving the

labels j and k to denote the KK numbers, which can take integer values on the restricted

range j > 0, k ≥ 0 and j = k = 0. For a scalar field one finds the simple result, derived in

Appendix A,

G(m,l;m′,l′)
p,n =

i

p2 − M2
m,l

δ̂(m, l;m′, l′;n) . (2.17)

Therefore, the information about the boundary conditions is contained in the “generalized”

δ-functions defined in eq. (2.14). Note that for the zero mode, G
(m,l;0,0)
p,n=0 = 4(i/p2)δm,0δl,0,

one finds an additional factor of 4 in the momentum representation, compared to the

zero-mode propagator g0,0
S = i/p2 in the KK-number representation.

2.2.2 Kaluza-Klein mixing

It is also useful to derive the relation between the KK-number and momentum space repre-

sentations of the propagator when transitions among different KK states are allowed. This

situation arises when interactions are included and the unperturbed KK states defined in

eqs. (2.1) and (2.2) are not exact mass eigenstates. These KK-number violating transitions

are of great phenomenological interest and we will consider how they arise in greater detail

in later sections.

Here we simply note that quite generally we can represent the full propagator either

in the KK-number basis or the momentum basis, along the lines discussed previously:

G(p; z; z′) =
1

L2

∑

j,k

′∑

j′,k′

′
g(j,k);(j′,k′) f (j,k)

n (z)
[

f (j′,k′)
n (z′)

]∗

=
1

4L2

∑

m,l

∑

m′,l′

G(m,l;m′,l′)
n h(m,l)(z)

[

h(m′,l′)(z′)
]∗

, (2.18)

the only new ingredient being the possibility of non-diagonal KK transitions. In Ap-

pendix A we derive the general relation between the expansion coefficients G
(m,l;m′,l′)
n and

g(j,k);(j′,k′). The specific form of the momentum space coefficients G
(m,l;m′,l′)
n encodes the

appropriate boundary conditions.

A special case of interest arises when the momentum quantum numbers m and l take

on positive values:

g(j,k);(j′,k′) = G(j,k;j′,k′)
n for j, j′ > 0 and k, k′ ≥ 0 . (2.19)

Also, when a zero mode is involved we get:

g(j,k);(0,0) =
1

2
G(j,k;0,0)

n for j > 0, k ≥ 0 ,

g(0,0);(j′,k′) =
1

2
G(0,0;j′,k′)

n for j′ > 0, k′ ≥ 0 , (2.20)

g(0,0);(0,0) =
1

4
G(0,0;0,0)

n .
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Note that the factor of 4 relating g(0,0);(0,0) and G
(0,0;0,0)
n is similar to the one found in the

diagonal case studied in subsection 2.2.1.

Relations (2.19) and (2.20) are useful to obtain the KK-number expansion coefficients,

which contain all physical information, from the momentum space expansion coefficients,

which are more easily calculated in certain situations.

2.3 KK-number violating structure due to localized operators

As mentioned in the Introduction, the chiral square compactification has conical singular-

ities at the corners of the fundamental square region, with coordinates (x4, x5) = (0, 0),

(L,L) and (0, L). In this section we consider the effect of operators localized at these spe-

cial points. In fact, the calculation of loops involving bulk interactions reveals logarithmic

divergences that require counterterms localized precisely at these points. In later sections

we shall show by explicit computation that the divergences at one-loop order have precisely

this property. It will be useful to define the shorthand notation

δc(z) ≡ δ(x4)δ(x5) + δ(L − x4)δ(L − x5) + c δ(x4)δ(L − x5) , (2.21)

where c is a dimensionless coupling that parametrizes the strength of the operators at

(0, L) relative to those at (0, 0) and (L,L). We assume that operators localized at (0, 0)

and (L,L) appear with identical coefficients, as required by KK-parity.

Let us consider the most general set of localized kinetic terms for a complex scalar

field Φ

1

4
δc1(z) × r1 ∂µΦ†∂µΦ +

[

1

4
δc2(z) × r2 Φ†(∂+∂−Φ) + h.c.

]

− 1

4
δc3(z) × r3(∂+Φ†)(∂−Φ) − 1

4
δc′3

(z) × r′3(∂−Φ†)(∂+Φ) , (2.22)

where

∂± = ∂4 ± i∂5 . (2.23)

The constants ri, ci for i = 1, 2, 3 and r′3, c′3 are arbitrary. For convenience, we extracted a

factor of (1/2)2 to account for an enhancement due to the KK wavefunctions in eq. (2.2),

evaluated at the singular points. Note that the ci are dimensionless, but the ri have dimen-

sions of length squared. Notice also that the coefficients of the 4D-like kinetic term need

not be the same as for the kinetic operators with derivatives in the compact directions,

∂±. However, we assumed a rotational symmetry in the transverse x4–x5 plane that forces

the ∂4 and ∂5 derivatives to appear on an equal footing. This is natural given the rota-

tional symmetry of the conical singularities, and will be explicitly checked by the one-loop

computation in the following sections.

Using the scalar propagator representation given in eq. (2.4), the contribution of the

first term in eq. (2.22) to the two-point function is

z

y

z′
=

∫ L

0
d2y G(p; z′, y)

[

1

4
δc1(y) ir1p

2

]

G(p; y, z)
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=

(

1

L2

)2
∑

j,k

′∑

j′,k′

′
gj,k
S f (j,k)

n (z′)
[

ir1p
2K(j,k)(j′,k′)

c1

]

gj′,k′

S

[

f (j′,k′)
n (z)

]∗

,(2.24)

where the cross represents an insertion of the localized 4D-like kinetic term in eq. (2.22),

and

K(j,k)(j′,k′)
c =

1

4

{[

f (j,k)
n (0, 0)

]∗

f (j′,k′)
n (0, 0) +

[

f (j,k)
n (L,L)

]∗

f (j′,k′)
n (L,L)

+ c
[

f (j,k)
n (0, L)

]∗

f (j′,k′)
n (0, L)

}

, (2.25)

with the KK wavefunctions f
(j,k)
n defined in eq. (2.2). Insertions of the kinetic terms

involving derivatives in the extra dimensions can be treated along the same lines with the

help of the relations

∂±f (j,k)
n (z) = i rj,±kMj,kf

(j,k)
n∓1 (z) , (2.26)

where the rj,k are complex phases defined by

rj,k ≡ j + ik
√

j2 + k2
. (2.27)

We see that eq. (2.24) has the general KK-number mixing structure of eq. (2.18).

In order to interpret the result of the one-loop computations we present in the following

sections, it is useful to consider the momentum space representation of the previous process.

Using eq. (2.19) we write the contribution to the two-point function in momentum space,

(p4, p5) = (m/R, l/R), when m, l > 0, for the four types of boundary conditions n = 0, 1, 2

or 3.

Consider first scalar fields satisfying n = 0 boundary conditions, i.e. having a zero-

mode in its KK spectrum. Assuming for simplicity that r2, c2 are real, we get

G(m,l;m′,l′)
n =

m, lm′, l′

= gm,l
S

{

i
r1

L2
p2K(m,l)(m′,l′)

c1 − i
r2

L2

(

M2
m,l + M2

m′,l′
)

K(m,l)(m′,l′)
c2

}

gm′,l′

S ,(2.28)

where, for these boundary conditions, eqs. (2.2) and (2.25) give

K(m,l)(m′,l′)
c =

4
[

1 + (−1)m+l+m′+l′
]

+ c[(−1)m + (−1)l][(−1)m
′
+ (−1)l

′
]

4 (1 + δm,0δl,0)
(

1 + δm′,0δl′,0

) . (2.29)

It is also easy to see that the operators proportional to r3 and r′3 in eq. (2.22) vanish in

this case.

Note that, as a result of the operators at (0, 0) and (L,L) being equal, the induced

KK transitions are non-vanishing only when m + l and m′ + l′ are both even or both odd,

thus preserving precisely the KK parity defined by (−1)m+l. Furthermore, it is useful to

notice that eq. (2.29) gives rise to precisely three different non-vanishing cases, which we
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find convenient to order as follows

Case 1a: (−1)m+l = (−1)m
′+l′ = +1, m − m′ even,

Case 1b: (−1)m+l = (−1)m
′+l′ = +1, m − m′ odd,

Case 2: (−1)m+l = (−1)m
′+l′ = −1.

(2.30)

That is, localized operators distinguish between KK-number transitions among KK-parity

even states and KK-parity odd states. Notice that the distinction arises from operators

localized at (0, L). Furthermore, for KK-parity even transitions, there is a difference de-

pending on whether m − m′ is even or odd.

For n = 2 boundary conditions, the momentum space two-point function with inser-

tions of the localized operators in eq. (2.22) has the structure of eq. (2.28) with

K(m,l)(m′,l′)
c =

c[(−1)m − (−1)l][(−1)m
′ − (−1)l

′
]

4 (1 + δm,0δl,0)
(

1 + δm′,0δl′,0

) . (2.31)

In this situation, we obtain three cases that we label as follows

Case 1: (−1)m+l = (−1)m
′+l′ = +1,

Case 2a: (−1)m+l = (−1)m
′+l′ = −1, m − m′ even,

Case 2b: (−1)m+l = (−1)m
′+l′ = −1, m − m′ odd.

(2.32)

Note that for n = 2, it is the transitions between KK-parity odd states that contain

two subcases, 2a and 2b, while for n = 0, the subcases appeared when KK-parity even

transitions are considered, 1a and 1b.

Finally, for n = 1 or n = 3 boundary conditions, the localized 4D-like kinetic term does

not contribute to the two-point function as a result of the vanishing of the KK wavefunctions

at the three conical singularities. Only the operators proportional to r3 and r′3 in eq. (2.22)

give a nonvanishing contribution:

G
(m,l;m′,l′)
n=1,3 = gm,l

S

{

−i
r3

L2
rm,lr

∗
m′,l′Mm,lMm′,l′K

(m,l)(m′,l′)
c3

− i
r′3
L2

r∗m,lrm′,l′Mm,lMm′,l′K
(m,l)(m′,l′)
c′3

}

gm′,l′

S , (2.33)

To obtain this, we used eq. (2.26) as well as the fact that
[

f
(j,k)
1 (z)

]∗

= −f
(j,k)
3 (z), from

eq. (2.2). When n = 3, K
(m,l)(m′,l′)
c3 is as given in eq. (2.29) and K

(m,l)(m′,l′)
c′3

as in eq. (2.31),

while for n = 1, it is the other way around. Notice that for n = 1 or 3 one generically gets

four different non-vanishing results, corresponding to cases 1a, 1b, 2a and 2b in eqs. (2.30)

and (2.32).

By checking that loop contributions to the two point function have the structure of

eqs. (2.28) and (2.33) we shall be able to confirm in later sections that they correspond to

localized operators as in eq. (2.22).
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3. Chiral fermions

Having discussed various general properties in the scalar case, and before we can tackle the

calculation of one-loop radiative corrections in this class of theories, we need to consider

the form of the propagator in momentum space for fields transforming non-trivially under

the 6D Lorentz group. In this section, we treat the case of 6D chiral fermions, Ψ±, where

+ or − label the 6D chirality, according to the projection operators P± = 1
2(1±Γ), with Γ

the 6D chirality operator. In the following section we consider the propagators associated

with 6D gauge fields, which contain both spin-1 and spin-0 components under the unbroken

4D Lorentz group.

As shown in [10], fermions propagating in six dimensions with the two extra dimensions

compactified on the chiral square have a chiral zero-mode. Starting from the free fermion

action (ΓM are 8 × 8 Dirac Γ-matrices, and M = 0, 1, . . . , 5 runs over the 6D Lorentz

indices)

SΨ =

∫

d4x

∫ L

0
dx4

∫ L

0
dx5 i

2

[

Ψ ΓM∂MP±Ψ −
(

∂MΨ
)

ΓMP±Ψ
]

, (3.1)

and imposing the identification of adjacent sides of the square region 0 < x4, x5 < L, one

can show that the two 4-dimensional chiralities, Ψ±L and Ψ±R, contained in Ψ± ≡ P±Ψ,

satisfy boundary conditions determined by integers n±
L and n±

R such that

n±
R = n±

L ∓ 1 mod 4 . (3.2)

This shows that only a chiral zero-mode is allowed. The propagator associated with this

system is obtained by inverting the operator appearing in eq. (3.1), taking care of imposing

the appropriate boundary conditions. We leave the details to Appendix B. The resulting

propagator in the momentum space representation takes the form

G±,(m,l;m′,l′)
p = P±ΓMpM gm,l

S

[

PR δ̂(m, l;m′, l′;n±
L ) + PL δ̂(m, l;m′, l′;n±

R)
]

, (3.3)

where pM = (pµ, p4, p5) with p4 = −m/R and p5 = −l/R [the minus signs arising from the

Minkowski metric], and n±
L , n±

R are related by eq. (3.2). gm,l
S is the scalar propagator given

in eq. (2.5). When using eq. (3.3), one should be careful to remember that the 4D chirality

projectors, PL,R, distinguish between the Γµ and Γ4,5 terms in ΓMpM . In particular, PL,R

commute with Γ4 and Γ5.

4. Gauge fields

We turn now our attention to the propagators associated with the 6D gauge system. We

start from the action

S =

∫

d4x

∫ L

0
dx4

∫ L

0
dx5

(

−1

4
FMNFMN + LGF

)

, (4.1)

where the indices M , N run over the six spacetime coordinates. After compactification,

the components of the 6D gauge field naturally separate into Aµ (µ = 0, 1, 2, 3) and A4,
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A5. While the former are part of a spin-1 field, the latter constitute two scalar degrees of

freedom from a four-dimensional point of view.

A convenient choice of gauge arises by requiring that the mixings of Aµ with A4 and

A5 vanish:

LGF = − 1

2ξ

[

∂µAµ − ξ (∂4A4 + ∂5A5)
]2

, (4.2)

where ξ is a gauge fixing parameter. This gauge clarifies how the physical degrees of freedom

are encoded in the 6D field, AM : at each massive KK level, one linear combination of the

two scalars, A4 and A5 is eaten by the massive Aµ fields, while the orthogonal combination

remains as an additional scalar degree of freedom. This system was studied in detail

in [11], where the appropriate boundary conditions and resulting interactions were worked

out. We assume that Aµ satisfies boundary conditions corresponding to n = 0, so that the

spin-1 KK towers have a zero-mode. In other words, we do not consider the case where

the gauge symmetry is broken by the boundary conditions. One also finds that the linear

combinations

A± = A4 ± iA5 (4.3)

satisfy boundary conditions give by n = 3 for A+ and n = 1 for A−. In particular, there

are no zero-modes in the scalar sector. We refer to these scalars as “spinless adjoints”.

In the following subsections we derive the propagators for the spin-1 and spin-0 com-

ponents, as well as the ghost fields associated with the gauge fixing term eq. (4.2).

4.1 The spin-1 components

Apart from the boundary conditions, which are treated as for the scalar case in section 2,

the derivation of the spin-1 propagator in momentum space is identical to the 4D derivation.

We obtain

G(m,l;m′,l′)
µν,p = gm,l

µν δ̂(m, l;m′, l′; 0) . (4.4)

where

gm,l
µν = −

[

ηµν − (1 − ξ)
pµpν

p2 − ξM2
m,l

]

gm,l
S , (4.5)

and gm,l
S is given in eq. (2.5). We recognize the 4-dimensional propagators appropriate to

the gauge fixing term (4.2) as those for a (massive) gauge field in an Rξ gauge.

4.2 The spin-0 components

As shown in Appendix B, the momentum space propagator, defined as the inverse of the

quadratic operator associated with the A4–A5 system in the free Lagrangian, can be more

easily derived in the A± basis, defined by eq. (4.3), where the boundary conditions are well

defined. The result is a 2 × 2 matrix with components





G
(m,l;m′,l′)
p,++ G

(m,l;m′,l′)
p,+−

G
(m,l;m′,l′)
p,−+ G

(m,l;m′,l′)
p,−−



 =
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(

gm,l
h + gm,l

φ

)

δ̂(m, l;m′, l′; 3) −r2
m,l

(

gm,l
h − gm,l

φ

)

δ̂(m, l;m′, l′; 1)

−r∗2m,l

(

gm,l
h − gm,l

φ

)

δ̂(m, l;m′, l′; 3)
(

gm,l
h + gm,l

φ

)

δ̂(m, l;m′, l′; 1)



 , (4.6)

where

gm,l
h =

i

p2 − M2
m,l

, gm,l
φ =

i

p2 − ξM2
m,l

, (4.7)

and the complex phases rm,l were defined in eq. (2.27). The pole structure shown in

eq. (4.7) reveals that the A4–A5 system has two degrees of freedom at each KK level, one

with mass Mm,l and the second with mass
√

ξMm,l. The scalar mode with the ξ-dependent

mass corresponds to the longitudinal degree of freedom of the massive spin-1 gauge fields,

as required by the higher dimensional Higgs mechanism.

Taking into account the fact that A†
− = A+, one can show that the relation between

the various components G++, G+−, G−+ and G−− in eq. (4.6), and the tree-level two-point

functions that enter the Feynman rules is given by

〈Am,l
+ Am′,l′†

+ 〉 =
1

2

[

G
(m,l;m′,l′)
p,++ + G

(−m′,−l′;−m,−l)
p,−−

]

= G
(m,l;m′,l′)
p,++ ,

〈Am,l
+ Am′,l′

+ 〉 =
1

2

[

G
(m,l;m′,l′)
p,+− + G

(−m′,−l′;−m,−l)
p,+−

]

= G
(m,l;m′,l′)
p,+− , (4.8)

together with their complex conjugates, were we chose to express all correlators in terms

of A+ and A†
+. The second equalities follow from the explicit solution for G(m,l;m′,l′) given

in eq. (4.6).

4.3 Faddeev-Popov ghosts

The ghost Lagrangian associated with the gauge fixing term, eq. (4.2), is

−c̄a [∂µDµ − ξ (∂4D4 + ∂5D5)] c
a , (4.9)

where the ghost fields, ca, satisfy the same boundary conditions as Aµ, i.e. given by n = 0.

By comparing to the derivation of the scalar propagator, eq. (2.17), it is easy to see that

the ghost propagator in momentum space is given by

G
(m,l;m′,l′)
ξ,p =

i

p2 − ξM2
m,l

δ̂(m, l;m′, l′; 0) , (4.10)

i.e., it has a ξ-dependent mass given by
√

ξMm,l.

5. Radiative corrections

Having at our disposal the propagators for 6D scalars, Weyl fermions and gauge fields that

correctly encode the boundary conditions appropriate in the chiral square background, we

are in a position to consider the one-loop structure of the theory. In this section we compute

the quantum corrections to the two-point functions (sometimes we will refer to these as

self-energies, even though they also include mixing among KK states) for gauge, fermion

and scalar fields and show that, besides a renormalization of the bulk kinetic terms, the two

point correlation functions contain logarithmic divergences corresponding to counterterms

localized at the conical singularities with coordinates (x4, x5) = (0, 0), (L,L) and (0, L).
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Aa
α

p, m′, l′

Ab
β

p, m, l

k + p

m′
1, l

′
1

m1, l1

k

m′
2, l

′
2 m2, l2

Aa
α Ab

β

p, m′, l′ p, m, l

k

m′
1, l

′
1

m1, l1

(a) (b)

Figure 1: One-loop contributions to the gauge boson self energy due to a minimally coupled scalar.

The external four-dimensional momentum is denoted by p. The momenta along the extra dimensions

are simply denoted by the corresponding integer quantum number according to p4 = m/R, p5 = l/R,

etc. Since the momentum in the compact dimensions is not conserved, each line is labeled by two

sets of momenta.

5.1 Gauge boson two-point function

We first compute the one loop contributions to the gauge boson two-point function. We

consider in turn scalar matter, fermionic matter and the gauge self-interactions them-

selves. We present the scalar case in considerable detail to show how the KK-number

violating structure corresponding to localized operators arises. The lessons thus learned

carry straightforwardly to the remaining types of one-loop graphs.

5.1.1 Scalar matter

We start by evaluating the one-loop diagrams arising from scalars minimally coupled to

gauge bosons. We consider 6D scalar fields satisfying any of the possible boundary con-

ditions, labeled by n = 0, 1, 2 or 3. We evaluate these diagrams in detail to show how

the operators localized at the three conical singularities, with coordinates (x4, x5) = (0, 0),

(0, L) and (L,L), arise. We need only consider the divergent pieces. For fixed KK numbers

of the external lines, (j, k) and (j′, k′), these split into two different categories:

• Terms with a KK-number structure identical to the tree-level propagator, eq. (4.4),

i.e. proportional to δ̂(j, k; j′, k′; 0). After KK summation, the result grows as a power

of the number of KK modes. This power-law divergence renormalizes 6D bulk oper-

ators, and is of no interest to us here.

• Terms with a KK-number structure different from the tree-level propagator (i.e. KK-

number violating). At one loop, only a finite number of KK states contribute, and

the divergences are only logarithmic, as in a 4D computation. We would like to see

that the KK-number violating structure that arises here corresponds precisely to the

one induced by operators localized at (0, 0), (0, L) and (L,L).

In order to see the above features it is useful to concentrate on the two-point function,

as opposed to the amputated diagrams. Let us start with the diagram involving the
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interaction between two scalars and two gauge bosons, as in figure 1 (b). In momentum

space, we have

〈A(j,k)
µ A(j′,k′)

ν 〉(b) =

(

1

4L2

)2 (

1

4

)

∑

m,l

∑

m′,l′

Gα(j,k;m,l)
µ,p

[

〈A(m,l)
α A

(m′,l′)
β 〉(b)amp

]

Gβ(m′,l′;j′,k′)
ν,p ,

(5.1)

where each propagator carries a factor of 1/(4L2), as in eq. (2.18), and the additional

factor of 1/4 arises from the integration over interaction points in spacetime,
∫ L
0 d2y =

(1/4)
∫ L
−L d2y. Using the Feynman rules shown in figure 2, the amputated function in

figure 1 (b) is

〈A(m,l)
α A

(m′,l′)
β 〉(b)amp = 2ig2

6 Tr(T aT b) ηαβ

∑

m1,l1

∫

dDk

(2π)D
G

(m1,l1;m′
1,l′1)

k,n , (5.2)

where the scalar propagator, G
(m1,l1;m′

1,l′1)
k,n , was defined in eq. (2.17). It is understood that,

due to momentum conservation, m′
1 = m1 + m′ − m and l′1 = l1 + l′ − l. Notice that

the factor of 1/(4L2) associated with the internal propagator disappears after integrating
∫ L
−L d2y, according to the orthonormality condition, eq. (2.13).

Consider the KK sums in the two point function (5.1). The first term in δ̂(m1, l1;m
′
1,

l′1;n) (see eq. (2.14)) leads to

∑

m,l

∑

m′,l′

δ̂(j, k;m, l; 0)
[

δm1,m′
1
δm2,m′

2

]

δ̂(m′, l′; j′, k′; 0) = 4 δ̂(j, k; j′, k′; 0) , (5.3)

which has the KK-number structure of the tree-level propagator, arising from the bulk

kinetic terms. Since G
(m1,l1;m′

1,l′1)
k,n = i(k2−M2

m1,l1
)−1 δ̂(m1, l1;m

′
1, l

′
1;n), the 4D momentum

integral in eq. (5.2) is quadratically divergent. In dimensional regularization, the divergent

part is proportional to M2
m1,l1

∼ m2
1 + l21, and it is clear that the contribution from eq. (5.3)

diverges like
∑

m1,l1
(m2

1 + l21). This power-law divergence corresponds to a renormalization

of the bulk gauge kinetic term.

The contribution due to the three remaining terms in δ̂(m1, l1;m
′
1, l

′
1;n) lead to a KK-

number violating structure corresponding to localized operators at the three corners of the

chiral square, as follows. These terms fix the loop momenta m1, l1 in terms of m−m′ and

Φb

Φa†

Ac
µ

p1

p2

p3

= −ig6 (p1 − p2)µ(T
c)ab

Ac
γ

Φb

Ad
δ

Φa†

= ig2
6

{

T c, T d
}

ab
ηγδ

Figure 2: Momentum space Feynman rules for scalars minimally coupled to gauge bosons in the

representation T .
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AS BS

n = 0 n = 1, 3 n = 2 n = 0 n = 1, 3 n = 2

(a) 1
3 ×











3

2

5/2

−1

0

−1/2

−1

−2

−3/2

(M2
m,l + M2

m′,l′) ×











5/2

2

9/4

−1/2

0

−1/4

−3/2

−1

−7/4

(b) 0 0 0 −(M2
m,l + M2

m′,l′) ×











5/2

2

9/4

−1/2

0

−1/4

−3/2

−1

−7/4

Table 1: Scalar functions AS and BS for scalar matter loops, as defined via eq. (5.5), corresponding

to the diagrams (a) and (b) of figure 1. These are computed in dimensional regularization. We give

the results for scalars satisfying the four types of boundary conditions, labeled by n = 0, 1, 2, 3,

allowed on the chiral square compactification of Ref. [10]. For a given n and for each diagram, there

are three possible cases depending on KK-parity and whether m − m′ is even or odd, as listed in

eq. (2.30): the first two cases correspond to even-even mixings with m−m′ even and m− m′ odd,

and the third case to odd-odd mixings. All KK-parity violating transitions vanish. In all cases the

gauge violating coefficient BS vanishes when both diagrams are added.

l − l′ according to

δm1,l′1
δl1,−m′

1
→ m1 = 1

2 [(m − m′) − (l − l′)] , l1 = 1
2 [(m − m′) + (l − l′)] ,

δm1,−m′
1
δl1,−l′1

→ m1 = 1
2(m − m′), l1 = 1

2(l − l′),

δm1,−l′1
δl1,m′

1
→ m1 = 1

2 [(m − m′) + (l − l′)] , l1 = 1
2 [(m − m′) − (l − l′)] .

(5.4)

Clearly, for given (m, l) and (m′, l′) only a finite number of states contribute to the KK

sum. Also, since m1 and l1 must be integers, only when (−1)m+l+m′+l′ = +1 can the result

be nonvanishing, in accordance with the KK-parity assignment (−1)m+l for states with

quantum numbers (m, l). Like for the KK-number conserving terms, the (logarithmically)

divergent contribution for each nonvanishing term in the sum is proportional to m2
1 + l21

(in dimensional regularization). To obtain the correct KK-number violating structure, it is

necessary to contract with the external propagators, as in eq. (5.1). In this process, all the

crossed terms, such as mm′ or ll′ cancel out and only terms proportional to M2
m,l + M2

m′,l′

survive.

A straightforward computation allows us to write the KK-number violating contribu-

tion to the two-point function in momentum space as
(

1

4L2

)

Gα(j,k)
µ,p

{

−i
g2
4

16π2
T (Φ)δab Γ

( ε

2

)

[

AS(p2ηαβ − pαpβ) − BSηαβ

]

}

Gβ(j′,k′)
ν,p , (5.5)

where ε = 4−D and Tr(T aT b) = T (Φ)δab, with T (Φ) = 1/2 for matter in the fundamental

representation of SU(N). The scalar functions AS , BS for the four types of boundary

conditions are given in Table 1, and the explicit factor of 1/(4L2) in eq. (5.5) should be

identified with the one appearing in eq. (2.18), while the remaining factor of 1/L2 was

absorbed in the 4D gauge coupling, g2
4 = g2

6/L
2.
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We see that for each type of boundary condition (n = 0, 1, 2 or 3) obeyed by the scalar

running in the loop, there are three different cases, that we ordered as in eq. (2.30). This is

precisely the KK-number violating structure that arises from quadratic operators involving

fields satisfying n = 0 boundary conditions (the gauge field), localized at the points (0, 0),

(L,L) and (0, L), as discussed in Section 2.3. Notice that the above three cases are distinct

precisely as a result of the operator localized at (0, L), proportional to c in eq. (2.21).

For the diagram involving the interactions between two scalars and a single gauge

boson, the two-point function in momentum space is

〈A(j,k)
µ A(j′,k′)

ν 〉(a) =

(

1

4L2

)2 (

1

4

)2
∑

m,l

∑

m′,l′

Gα(j,k;m,l)
µ,p

[

〈A(m,l)
α A

(m′,l′)
β 〉(a)

amp

]

Gβ(m′,l′;j′,k′)
ν,p ,

(5.6)

where now we get a factor (1/4)2 due to the two vertices, and the amputated function of

figure 1 (a) is

〈A(m,l)
α A

(m′,l′)
β 〉(a)

amp = −g2
6 i2 Tr(T aT b)

∑

m1,l1

∑

m′
1,l′1

∫

dDk

(2π)D
(2k + p)α(2k + p)β

× G
(m1,l1;m′

1,l′1)
k+p,n G

(m′
2,l′2;m2,l2)

k,n ,(5.7)

where it is understood that, due to momentum conservation at each vertex, m2 = m1 −m,

l2 = l1 − l, m′
2 = m′

1 − m′ and l′2 = l′1 − l′. Noting that M2
m′

2,l′2
depends on m′

2, l′2 only

through m′2
2 + l′22 , and is therefore invariant under exchange of m′

2 and l′2 and/or a change

in their signs, we have

G
(m′

2,l′2;m2,l2)
k,n =

i

k2 − M2
m′

2,l′2

δ̂(m′
2, l

′
2;m

′, l′;n) =
i

k2 − M2
m′,l′

δ̂(m′
2, l

′
2;m

′, l′;n) , (5.8)

which shows that the integrand in eq. (5.7) depends on m′
1, l′1 only through the generalized

δ-functions defined in eq. (2.14). We can then do the sum over m′
1, l′1 using the identity

[see eq. (A.17) with n1 = n2 = n]

∑

m′
1,l′1

δ̂(m1, l1;m
′
1, l

′
1;n)δ̂(m′

2, l
′
2;m2, l2;n)

= δ̂(m, l;m′, l′; 0) + eiθ δ̂(m − m1 − l1, l − l1 + m1;m
′, l′; 0) (5.9)

+ e2iθδ̂(m − 2m1, l − 2l1;m
′, l′; 0) + e3iθ δ̂(m − m1 + l1, l − l1 − m1;m

′, l′; 0) ,

where θ = nπ/2. We see that the first term has the same structure as the tree-level prop-

agator. It is also independent of the loop momenta, m1, l1, so that the corresponding KK

sum leads to a power-law divergence. The remaining terms give KK violating transitions

that, as we will see, correspond to localized operators. In order to compare to diagram

(b) as computed before, we should contract with the external propagators and perform the

KK sums. The KK number preserving term just gives

∑

m,l

∑

m′,l′

δ̂(j, k;m, l; 0)δ̂(m, l;m′, l′; 0)δ̂(m′, l′; j′, k′; 0) = 16 δ̂(j, k; j′, k′; 0) .
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The contraction of the external propagators with the last three, KK-number violating terms

in eq. (5.9), do not alter the KK violating structure, and simply give an overall factor of 16.

Thus, unlike for diagrams with the topology of diagram (b), for diagrams with the topology

of diagram (a) it is sufficient to compute the amputated diagram, while keeping in mind

that the contraction with external propagators produces a factor of 16 that cancels against

some of the factors in the two-point function. The net effect is that for these diagrams

one should include a factor of 1/(4L2) where the length scale L is absorbed by the 4D

gauge coupling via g2
4 = g2

6/L
2. A straightforward computation allows us to express the

KK violating contributions to diagram (a) as in eq. (5.5), with scalar coefficients AS and

BS as given in Table 1.

We see that after adding the two diagrams (a) and (b), the “gauge violating” con-

tribution proportional to ηαβ cancels out. Therefore, at one-loop order, the scalar gauge

interactions give a contribution to the two point function which is equivalent to the effect

of the localized operator

1

4
δcS

(z) ×
(

−1

4
r̂SL2F a

µνFµνa

)

, (5.10)

where δc(z) stands for the Dirac delta-functions at the conical singularities, as defined in

eq. (2.21), and the factor of 1/4 accounts for universal KK wavefunction enhancements.

Here we wrote the dimensionful coefficient in eq. (2.21) as rS = r̂SL2, so that the scalar

contribution is

r̂S =
2

3
× g2

4

16π2
T (Φ)Γ

( ε

2

)

×















5/8

−1/8

−3/8

, cS =















2/5 for n = 0

2 for n = 1, 3

−2/3 for n = 2

. (5.11)

This shows explicitly that the logarithmic divergences that appear in the chiral square

compactification renormalize operators precisely at the three conical singularities.

5.1.2 Fermionic matter

We now turn to fermionic matter. We restrict ourselves to 6D fermions containing a zero-

mode (i.e. we do not consider n = 2 boundary conditions).

We use the same labeling conventions as in figure 1, as we will do throughout this

paper. As discussed in detail in the previous section, we may concentrate on the amputated

fermion loop diagram, including a factor of 1/4:

−
(

1

4

)

g2
4 i2 Tr(T aT b)

∑

m1,l1

∑

m′
1,l′1

∫

dDk

(2π)D
Tr

{

ΓβG
±,(m1,l1;m′

1,l′1)
k+p ΓαG

±,(m′
2,l′2;m2,l2)

k P∓

}

,

(5.12)

where the fermion propagator was given in eq. (3.3). Also, as explained in detail in the

scalar loop calculation described before, we separate the result into a KK-number preserv-

ing contribution that renormalizes bulk operators and a KK-number violating contribution

that renormalize localized operators.
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The trace in eq. (5.12) can be separated into parts involving the non-compact dimen-

sions

(k + p)λkρTr {ΓβΓλΓαΓρPL,RP∓} = 2 [(k + p)αkβ + (k + p)βkα − k · (k + p)ηαβ ] ,(5.13)

and parts involving the compact dimensions (denoted by indices i, j)

(k + p)ikjTr
{

ΓβΓiΓαΓjPLP∓

}

= rm1,l1r
∗
m′

2,l′2
Mm1,l1Mm′

2,l′2
Tr

{

ΓβΓ4ΓαΓ4PLP∓

}

= 2ηαβrm1,l1r
∗
m′

2,l′2
Mm1,l1Mm′

2,l′2
, (5.14)

(k + p)ikjTr
{

ΓβΓiΓαΓjPRP∓

}

= r∗m1,l1rm′
2,l′2

Mm1,l1Mm′
2,l′2

Tr
{

ΓβΓ4ΓαΓ4PRP∓

}

= 2ηαβr∗m1,l1rm′
2,l′2

Mm1,l1Mm′
2,l′2

, (5.15)

where we used the useful identities [10]

Γ5PLP± = ±iΓ4PLP± ,

Γ5PRP± = ∓iΓ4PRP± , (5.16)

to replace Γ5 in favor of Γ4. We also used k4+p4 = −m1/R, k5+p5 = −l1/R, k4 = −m′
2/R

and k5 = −l′2/R. The momentum dependent phases, rj,k, were defined in eq. (2.27). Notice

that the 6D chirality operator Γ contained in P± gives a nonvanishing contribution to

eqs. (5.14) and (5.15).

We express the result associated with the KK-number violating terms as

(

1

4L2

)

Gα(j,k)
µ,p

{

−i
g2
4

16π2
T (Ψ)δab Γ

( ε

2

)

[

AF (p2ηαβ − pαpβ) − BF ηαβ

]

}

Gβ(j′,k′)
ν,p , (5.17)

and find that for all KK-parity preserving transitions AF = 4/3 and BF = 0. As for

the scalar loops, the “gauge violating” term proportional to ηαβ vanishes. The equivalent

localized operator is in this case

1

4
δcF

(z) ×
(

−1

4
r̂F L2F a

µνFµνa

)

, (5.18)

where δc(z) was defined in eq. (2.21), the factor of 1/4 accounts for universal KK wave-

function enhancements, and

r̂F =
2

3
× g2

4

16π2
T (Ψ)Γ

( ε

2

)

, cF = 0 . (5.19)

Note that the fermion loop does not induce an operator localized at (0, L), i.e. the three

cases defined in (2.30) give the same result.

5.1.3 Gauge self-interactions

We consider now the one-loop corrections arising from the self-interactions in a non-abelian
gauge theory. The diagrams are shown in figure 3. In terms of the momentum space propa-
gators for the gauge bosons, the scalar adjoints and the ghost fields, given in eqs. (4.4), (4.6)

– 27 –



J
H
E
P
1
1
(
2
0
0
6
)
0
1
8

Aa
α Ab

β Aa
α Ab

β Aa
α Ab

β

(c) (d) (e)

Aa
α Ab

β Aa
α Ab

β Aa
α Ab

β

(f) (g) (h)

Aa
α Ab

β Aa
α Ab

β Aa
α Ab

β

(i) (j) (k)

Aa
α Ab

β

(l)

Figure 3: Gauge self-energy diagrams at one-loop in the 6D theory: (c), (d) gauge loops; (e) ghost

loop; and (f)–(l) loops associated with the A4 and A5 components of the 6D gauge field. For the

latter, the arrows represent the propagation of A+ = A4 + iA5.

and (4.10), they are:

(c) =

(

1

4

)

g2
4

2
fadlf bdl

∑

m1,l1

∑

m′

1
,l′

1

∫

dDk

(2π)D
[ηαδ(p − k)λ + ηδλ(2k + p)α − ηλα(k + 2p)δ]

× Gλλ′,k+p

(m1,l1;m′

1
,l′

1
) [ηλ′β(k + 2p)δ′ − ηδ′λ′(2k + p)β + ηβδ′(k − p)λ′ ] Gδδ′,k

(m′

2
,l′

2
;m2,l2)

, (5.20)

(d) = −i
g2
4

2
fadlf bdl

∑

m1,l1

∫

dDk

(2π)D
[2ηαβηδδ′ − ηαδηβδ′ − ηαδ′ηβδ] G

δδ′,k

(m1,l1;m′

1
,l′

1
) , (5.21)

(e) = −
(

1

4

)

g2
4f

aldf bdl
∑

m1,l1

∑

m′

1
,l′

1

∫

dDk

(2π)D
(k + p)αG

(m1,l1;m
′

1
,l′

1
)

ξ,k+p kβ G
(m′

2
,l′

2
;m2,l2)

ξ,k , (5.22)

(f) + (g) =

(

1

4

) (

1

2

)2

g2
4f

aldf bdl
∑

m1,l1

∑

m′

1
,l′

1

∫

dDk

(2π)D

[

rm′,l′Mm′,l′ − rm′

2
,l′

2
Mm′

2
,l′

2

]

× G
(m1,l1;m

′

1
,l′

1
)

++,k+p

[

r∗m,lMm,l − r∗m2,l2
Mm2,l2

]

G
(m′

2
,l′

2
;m2,l2)

αβ,k + h.c. , (5.23)

(h) + (i) =

(

1

4

) (

1

2

)2

g2
4f

aldf bdl
∑

m1,l1

∑

m′

1
,l′

1

∫

dDk

(2π)D

[

rm′,l′Mm′,l′ − rm′

2
,l′

2
Mm′

2
,l′

2

]

(5.24)

× G
(m1,l1;m

′

1
,l′

1
)

+−,k+p [rm,lMm,l − rm2,l2Mm2,l2 ] G
(m′

2
,l′

2
;m2,l2)

αβ,k + h.c. ,
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(j) =

(

1

4

)

g2
4

4
faldf bdl

∑

m1,l1

∑

m′

1
,l′

1

∫

dDk

(2π)D
(2k + p)α (2k + p)β

× G
(m1,l1;m

′

1
,l′

1
)

+−,k+p G
(m′

2
,l′

2
;m2,l2)

−+,k , (5.25)

(k) =

(

1

4

)

g2
4

4
faldf bdl

∑

m1,l1

∑

m′

1
,l′

1

∫

dDk

(2π)D
(2k + p)α (2k + p)β (5.26)

× G
(m1,l1;m

′

1
,l′

1
)

++,k+p G
(m2,l2;m

′

2
,l′

2
)

++,k , (5.27)

(l) = ig2
4f

adlf bdl ηαβ

∑

m1,l1

∫

dDk

(2π)D
G

(m1,l1;m
′

1
,l′

1
)

++,k , (5.28)

where we included a factor 1/4 for the diagrams involving trilinear interactions, as ex-

plained in subsection 5.1.1. It is similarly understood that the diagrams involving a quartic

interaction should be contracted with the external propagators in order to obtain the cor-

rect KK-number structure in the two-point function [see discussion after eq. (5.4)]. The

color factors are

fadlf bdl = C2(A)δab , (5.29)

where C2(A) = N for a SU(N) group. A lengthy but straightforward calculation allows

us to write the leading logarithmic divergences of diagrams (c)-(l) as

−i
g2
4

16π2
C2(A)δab Γ

( ε

2

)

[

AG(p2ηµν − pµpν) − BGηµν
]

, (5.30)

where the scalar functions AG and BG are presented in Table 2.

Note that the p2 terms in BG cancel between the ghost loop diagram and the diagram

involving trilinear gauge self-interactions, as happens in 4D QCD. Therefore, the “gauge

violating” terms in eq. (5.30), proportional to ηαβ , are proportional to the KK masses, thus

preserving the unbroken 4D gauge invariance. Diagrams (f)–(i) involving the coupling of

a single scalar to two gauge fields are directly related to the higher dimensional Higgs

mechanism. Also the divergent parts of diagrams (h)–(j) vanish. This results from a

cancellation between the two real scalar degrees of freedom in A+, as seen in the form of

the propagator G
(m1,l1;m′

1,l′1)
+−,p of eq. (4.6). Even though for arbitrary ξ the two real scalar

degrees of freedom have different masses, the ξ-dependence cancels out in the infinite terms.

Note also that diagrams (k) and (l) with ξ = 1, when the two real degrees of freedom in A+

have the same mass, agree with the results derived for a complex scalar minimally coupled

to a gauge field and satisfying n = 3 boundary conditions, as given in Table 1.

Adding the results of Table 2 we find that the contribution to the 6D gauge self-

interactions is given by

AG =
1

2
ξ ×















3

2

5/2

−















41/6

13/3

67/12

, BG =
1

4
(3 + ξ)

(

M2
m,l + M2

m′,l′
)

×















3

2

5/2

.(5.31)
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AG BG

(c) (1
2ξ − 7

3 ) ×







3

2

5/2

− 1
4p2 ×







3

2

5/2

+ 3
4 (4 + ξ + ξ2)(M2

m,l + M2
m′,l′) ×







5/4

1

9/8

(d) 0 − 3
4 (3 + ξ2)(M2

m,l + M2
m′,l′) ×







5/4

1

9/8

(e) 1
6 ×







3

2

5/2

1
4p2 ×







3

2

5/2

− 1
2ξ(M2

m,l + M2
m′,l′) ×







5/4

1

9/8

(f) + (g) 0 − 1
8 (3 + ξ)(M2

m,l + M2
m′,l′) ×







−7/2

−2

−11/4

(h) + (i) 0 0

(j) 0 0

(k) − 1
6 ×







2

0

1

1
4 (1 + ξ)(M2

m,l + M2
m′,l′) ×







−1

0

−1/2

(l) 0 − 1
4 (1 + ξ)(M2

m,l + M2
m′,l′) ×







−1

0

−1/2

Table 2: Scalar functions AG and BG in the non-abelian gauge sector, as defined via eq. (5.30),

corresponding to the diagrams (c)-(l) of figure 3. For each diagram, the first two cases correspond

to even-even mixings with m − m′ even and m − m′ odd, and the third to odd-odd mixings, as

listed in eq. (2.30).

which, together with eq. (5.30), determines the KK-number violating contribution to the

gauge boson two-point function arising from the gauge self-interactions in non-abelian

gauge theories.

5.1.4 Mass shifts and localized operators

It should be noted that the parameters AG and BG given in eq. (5.31), are gauge dependent.

In addition, as already mentioned, we find a “gauge violating” term proportional to ηµν ,

i.e. BG 6= 0. This term would arise from the localized operators [see eq. (1.4)]

O1,2 = Aµ∂+∂−Aµ (5.32)

Although these operators do not break the 4D gauge invariance associated with the zero-

mode gauge field, they are certainly not invariant under the set of 6D gauge transformations

left unbroken by the chiral square compactification [i.e. those generated by a gauge trans-

formation parameter satisfying n = 0 boundary conditions, as does Aµ.] Nevertheless,

given the fact that the kinetic term renormalization parameter, AG, is ξ-dependent, such

terms are necessary to ensure that physical quantities such as the mass shifts of the massive

KK modes are gauge invariant.
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Indeed, the KK diagonal components in eq. (5.30) give the leading contribution to the

KK mass shifts. For KK-parity even states, (−1)m+l = +1, case 1 in eq. (5.31) gives a

self-energy

−i
g2
4

16π2
C2(A)δab Γ

( ε

2

)

[(

3

2
ξ − 41

6

)

(p2ηµν − pµpν) −
3

2
(3 + ξ)M2

m,lηµν

]

, (5.33)

which leads to a mass shift

δM2
m,l =

g2
4

16π2
C2(A) Γ

( ε

2

)

[

3

2
(3 + ξ) −

(

3

2
ξ − 41

6

)]

M2
m,l

=
34

3
× g2

4

16π2
C2(A) Γ

( ε

2

)

M2
m,l . (5.34)

Similarly, for KK-parity odd states, (−1)m+l = −1, case 3 in eq. (5.31) gives a (diagonal)

self-energy

−i
g2
4

16π2
C2(A)δab Γ

( ε

2

)

[(

5

4
ξ − 67

12

)

(p2ηµν − pµpν) −
5

4
(3 + ξ)M2

m,lηµν

]

, (5.35)

which leads to a mass shift

δM2
m,l =

28

3
× g2

4

16π2
C2(A) Γ

( ε

2

)

M2
m,l . (5.36)

We see that the ξ dependence disappears from the physical mass shifts, as expected.

The presence of the gauge non-invariant operator associated with BG and the ξ-

dependence of AG and BG go hand in hand. Notice that by a field redefinition of the

form

Aµ → Aµ + β δc(z)Aµ , (5.37)

A± → A± ,

where δc(z) was defined in eq. (2.21) and β is a constant, the bulk gauge kinetic term

−1
4FMNFMN induces the following terms to first order in β:

−β

2
δc(z)FµνFµν − β δc(z)Aµ∂+∂−Aµ , (5.38)

where integration by parts was used to remove derivatives acting on the δ-functions (the

boundary conditions ensure that no surface terms are generated). It is then clear that by

choosing β and c appropriately, the terms of the form (5.32) can be removed, while generat-

ing a new contribution to the FµνFµν localized terms.6 Notice that the 6D gauge violating

term vanishes for ξ = −3, and no further field redefinition is necessary if calculations are

performed in this gauge. The upshot is that the induced localized operators, either in the

ξ = −3 gauge, or in an arbitrary gauge after the field redefinition discussed above, can be

written as

1

4
δcG

(z) ×
(

−1

4
r̂GL2F a

µνFµνa

)

, (5.39)

6We thank H. C. Cheng for discussions on this point.
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Ψ± Ψ± Ψ± Ψ± Ψ± Ψ±

(a) (b) (c)

Ψ± Ψ± Ψ± Ψ±

(d) (e)

Figure 4: One-loop fermion self-energy diagrams. These diagrams arise from the interactions with

the 6D gauge sector. The dashed lines with two arrows represent the propagation of A+.

where δc(z) was defined in eq. (2.21), the factor of 1/4 accounts for universal KK wave-

function enhancements, and

r̂G = −14

3
× g2

4

16π2
C2(A) Γ

( ε

2

)

, cG =
3

7
. (5.40)

This should be added to the contributions from scalar and fermion loops given in eqs. (5.10)

and (5.18).

Explicit computation of the KK-number violating one-loop corrections to the trilinear

and quartic gauge vertices in the gauge ξ = −3 should give precisely the coefficients

necessary to provide the non-abelian completion of the kinetic operator eq. (5.39), but we

leave such a check for future work.

5.2 Fermion two-point function

We turn now to the one-loop corrections to the fermion two-point function. We discuss

first the loops arising from the 6D gauge interactions. These include interactions with the

4D gauge fields and interactions with the spinless adjoints. In subsection 5.2.3 we study

the corrections arising from Yukawa interactions.

5.2.1 One-loop diagrams: spinor manipulations in 6D

The diagrams arising from the 6D gauge interactions are shown in figure 4. In terms of

the spin-1/2, spin-1 and spin-0 propagators given in eqs. (3.3), (4.4), (4.6), and according

to the vertices given in figure 11, they are given by

(a) = −
(

1

4

)

g2
4 C2(Ψ)

∑

m1,l1

∑

m′
1,l′1

Γµ

∫

dDk

(2π)D
G

±(m2,l2;m′
2,l′2)

k G
(m1,l1;m′

1,l′1)
µν,p−k ΓνP± , (5.41)

(b) = −
(

1

4

)

g2
4 C2(Ψ)

∑

m1,l1

∑

m′
1,l′1

Γ−

∫

dDk

(2π)D
G

±(m2,l2;m′
2,l′2)

k G
(m1,l1;m′

1,l′1)
++,p−k Γ+P± ,(5.42)

(c) = −
(

1

4

)

g2
4 C2(Ψ)

∑

m1,l1

∑

m′
1,l′1

Γ+

∫

dDk

(2π)D
G

±(m2,l2;m′
2,l′2)

k G
(m1,l1;m′

1,l′1)
−−,p−k Γ−P± ,(5.43)
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(d) = −
(

1

4

)

g2
4 C2(Ψ)

∑

m1,l1

∑

m′
1,l′1

Γ+

∫

dDk

(2π)D
G

±(m2,l2;m′
2,l′2)

k G
(m1,l1;m′

1,l′1)
−+,p−k Γ+P± ,(5.44)

(e) = −
(

1

4

)

g2
4 C2(Ψ)

∑

m1,l1

∑

m′
1,l′1

Γ−

∫

dDk

(2π)D
G

±(m2,l2;m′
2,l′2)

k G
(m1,l1;m′

1,l′1)
+−,p−k Γ−P± ,(5.45)

where a factor of 1/4 was included in each diagram as explained in subsection 5.1.1, and

Γ± =
1

2

(

Γ4 ± iΓ5
)

. (5.46)

We also chose the directions of the fermion loop momenta k, (m2, l2) and (m′
2, l

′
2) opposite

to the convention of figure 1, so that they are in the direction of the fermion number flow.

We concentrate on some useful remarks relevant in the evaluation of the previous

expressions. In particular, we show how to manipulate the 6D Γ-matrices efficiently to

understand the spinor structure, as well as the KK-number violating structure, of the

results.

Starting with diagram (a) and keeping in mind that [P±, PL,R] = 0, one obtains a term

involving only the momentum along the non-compact dimensions, proportional to

ΓµkλΓλΓν
∑

m1,l1

∑

m′
1,l′1

×

×
[

PLδ̂(m2, l2;m
′
2, l

′
2;n

±
L ) + PRδ̂(m2, l2;m

′
2, l

′
2;n

±
R)

]

δ̂(m1, l1;m
′
1, l

′
1; 0)P± , (5.47)

and also a term involving the extra-dimensional momenta that has the form of (5.47) with

kλΓλPLP± → −rm2,±l2Mm2,l2Γ
4PLP± ,

kλΓλPRP± → −rm2,∓l2Mm2,l2Γ
4PRP± . (5.48)

To obtain (5.48), we used k4 = −m2/R, k5 = −l2/R, and the identities given in eq. (5.16)

to express Γ5 in terms of Γ4. It is understood that the factor in eq. (5.48) appears under

the KK sums. The KK-number violating terms in the KK sums of (5.47) are nonvanishing

only when n±
L = 0, n±

R = 0, n±
L = 2 or n±

R = 2 [see comments after eq. (A.17)]. The

sums associated with (5.48), involving factors of m2 ± il2, are also non-vanishing in these

cases. The evaluation of the momentum integrals and remaining Γ-matrix algebra proceeds

exactly as in 4D.

Turning to the evaluation of diagrams (b)–(e) with the scalars A± in the loop, which

are characteristic of the 6D theory, we first notice that the definition (5.46) immediately

implies
(

Γ+
)2

=
(

Γ−
)2

= 0 . (5.49)

Also, from the identities given in eq. (5.16) one can easily see that

Γ±PLP± = Γ∓PRP± = 0 , (5.50)

– 33 –



J
H
E
P
1
1
(
2
0
0
6
)
0
1
8

AΨ BΨ

(a) [1 + (ξ − 1)] ×











3

2

5/2

[4 + (ξ − 1)] ×











3/2

1

5/4

(c) 1 ×











−1

0

−1/2

0

Table 3: Scalar functions AΨ and BΨ for the fermion self-energies, as defined via eq. (5.54),

corresponding to the diagrams (a) and (c) of figure 4, when the zero-mode is left-handed. Diagrams

(b), (d) and (e) are finite in this case. When the zero-mode is right-handed the results for diagrams

(b) and (c) are exchanged. For each diagram, the first two cases correspond to even-even mixings

with m − m′ even and m − m′ odd, and the third to odd-odd mixings, as listed in eq. (2.30).

and also

Γ±Γ∓PLP± = −PLP± ,

Γ∓Γ±PRP± = −PRP± . (5.51)

Consider first chirality + fermions. Using the fermion propagator given in eq. (3.3) and

G++ given in eq. (4.6), as well as eqs. (5.49)–(5.51), one can see that diagram (b) is

proportional to

pµΓµPRP+

∑

m1,l1

∑

m′
1,l′1

δ̂(m′
2, l

′
2;m2, l2;−n+

L )δ̂(m1, l1;m
′
1, l

′
1; 3) , (5.52)

so that it only renormalizes the 4D kinetic term. According to the identity given in

eq. (A.17), the sum in eq. (5.52) may be written as a sum of generalized δ̂-functions

with boundary conditions given by n+
L +3. As mentioned after eq. (A.17), the KK-number

violating terms vanish unless n+
L = 1, i.e. when n+

R = 0 [see eq. (3.2)].

Similarly, diagram (c) is proportional to

pµΓµPLP+

∑

m1,l1

∑

m′
1,l′1

δ̂(m′
2, l

′
2;m2, l2;−n+

R)δ̂(m1, l1;m
′
1, l

′
1; 1) , (5.53)

and the associated KK-number violating terms are non-vanishing only when n+
R = 1, i.e.

when n+
L = 0.

For diagrams (d) and (e), it is easy to see that the divergent parts are ξ-independent,

since they can at most diverge logarithmically. But G+− vanishes for ξ = 1 [see eq. (4.6)],

and therefore these diagrams are finite.

Diagrams (b)–(e) with chirality − fermions on the external lines can be treated simi-

larly.

We summarize our results for the fermion self-energies by considering two cases of

phenomenological interest: whether the zero-mode is left- or right-handed. If the zero-mode
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is left-handed, we find that the KK-number violating contribution to the corresponding

fermion two-point function can be written as

i
g2
4

16π2
C2(Ψ)Γ

( ε

2

)

{

AΨpµΓµPL − BΨΓ4
(

rm′,∓l′Mm′,l′PR + rm,±lMm,lPL

)}

P± , (5.54)

where C2(Ψ) is the eigenvalue of the quadratic Casimir operator in the representation of

the fermion Ψ, and the scalar function AΨ and BΨ are given in Table 3.

When the zero-mode is right-handed, we obtain eq. (5.54) with PL ↔ PR.

Since the cases nL = 2 or nR = 2 do not lead to zero-modes, and are therefore of less

phenomenological interest we do not record the results here. However, they can be easily

read from Table 3 and the last identity of Appendix A.

5.2.2 Mass shifts and localized operators

We can read now the self-energies proper [the diagonal entries in eq. (5.54)]. For KK-parity

even modes, we get

i
g2
4

16π2
C2(Ψ)Γ

( ε

2

)

{

(3ξ − 1) pµΓµPL +
3

2
(3 + ξ)

(

p4Γ
4 + p5Γ

5
)

}

P± , (5.55)

where p4 = −m/R and p5 = −l/R. Since only the left-handed fields receive a wavefunction

renormalization, after canonical normalization the mass shift is, to lowest order,

δMm,l =
g2
4

16π2
C2(Ψ)Γ

( ε

2

)

[

3

2
(3 + ξ) − 1

2
(3ξ − 1)

]

Mm,l

= 5 × g2
4

16π2
C2(Ψ)Γ

( ε

2

)

Mm,l , for (−1)m+l = +1 , (5.56)

and we see that the ξ-dependence cancels out, as expected. Notice also that the phases

rm,l in (5.54) also appear in the KK mass terms arising from the bulk kinetic term. They

can be rotated away by a chiral transformation, or equivalently, absorbed in the definition

of the wavefunction profile associated with the right-handed fermions, as done in [10].

For KK-parity odd modes we get the self-energy

i
g2
4

16π2
C2(Ψ)Γ

( ε

2

)

{(

5

2
ξ − 1

2

)

pµΓµPL +
5

4
(3 + ξ)

(

p4Γ
4 + p5Γ

5
)

}

P± , (5.57)

and the corresponding mass shift is

δMm,l = 4 × g2
4

16π2
C2(Ψ)Γ

( ε

2

)

Mm,l , for (−1)m+l = −1 . (5.58)

It is also interesting to note that eq. (5.54) corresponds to the localized operator

1

4
δcΨ(z) ×

(

r̂ΨL2 iΨ+LΓµ∂µΨ+L

)

+
1

4
δc′Ψ

(z) × r̂′ΨL2
[

iΨ+LΓ4∂−Ψ+R + h.c.
]

, (5.59)

where δc(z) stands for the Dirac delta-functions at the conical singularities, as defined in

eq. (2.21), and the factor of 1/4 accounts for universal KK wavefunction enhancements.
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Ψ1± Ψ1±

Figure 5: One-loop fermion self-energy diagrams associated with the Yukawa interaction (5.62).

The dashed line denotes a complex scalar satisfying boundary conditions labeled by n.

For a chirality minus fermion, Ψ−, one should simply make ∂− ↔ ∂+. If the zero-mode is

right-handed, one should make L ↔ R everywhere in eq. (5.59).

As noted in subsection 5.1.4, the one-loop computation in ξ = −3 gauge automati-

cally gives rise to operators with a gauge invariant structure, without any additional field

redefinitions. In this gauge, we obtain

r̂Ψ = −4 × g2
4

16π2
C2(Ψ)Γ

( ε

2

)

, cΨ =
1

2
, (5.60)

and

r̂′Ψ = 0 , (5.61)

so that no “mass-terms” are generated by the gauge interactions. A direct calculation of

the three-point vertex of two fermions and a gauge field in the ξ = −3 gauge should give the

correct coefficient to provide the gauge invariant completion of the kinetic term operators

of eq. (5.59).

Not all types of kinetic operators appear in eq. (5.59). This is consistent with the

fact that, when n±
L = 0, so that there is a left-handed zero-mode, Ψ±R vanishes at the

fixed points (0, 0), (L,L), and (L, 0). Therefore, the quadratic operators not appearing in

eq. (5.59) vanish at the singular points [note also that Γ±Ψ±L = Γ∓Ψ±R = 0, according to

eq. (5.49)].

5.2.3 Yukawa interactions

We finally consider the effect of Yukawa couplings such as

LYukawa = λ6ΦΨ1±Ψ2∓ + h.c. (5.62)

Note that the fermions must be different since they must have opposite 6D chiralities in

order for the above coupling to be Lorentz invariant. Φ is a complex 6D scalar. Assume

that the boundary conditions for the scalar are labeled by n, while the boundary conditions

for Ψ1± and Ψ2± are labeled by n±
1L, n±

1R, n∓
2L and n∓

2R, such that, according to eq. (3.2),

n±
1R = n±

1L ∓ 1 mod 4 ,

n∓
2R = n∓

2L ± 1 mod 4 . (5.63)

In addition, 6D Lorentz invariance of the local coupling (5.62) also requires [10]

n − n±
1L + n∓

2R = 0 mod 4 , (5.64)
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AΨ BΨ

n = 0 n = 1, 3 n = 2 n = 0 n = 1 n = 2 n = 3

1
2 ×











3

2

5/2

−1

0

−1/2

−1

−2

−3/2

1 ×











3/2

1

5/4

1/2

1

3/4

−1/2

−1

−3/4

−3/2

−1

−5/4

Table 4: Scalar functions AΨ and BΨ associated with the Yukawa contributions to the fermion

self-energies, as defined via eq. (5.68), corresponding to the diagram of figure 5. We assume that

the fermion has 6D chirality +, and that it has a zero-mode, i.e. we exclude n+
L,R = 2 boundary

conditions. We give the results for scalars satisfying the four types of boundary conditions, labeled

by n = 0, 1, 2, 3. For a given n and for each diagram, there are three possible cases depending on

KK-parity and whether m−m′ is even or odd, as listed in eq. (2.30): the first two cases correspond

to even-even mixings with m − m′ even and m − m′ odd, and the third case to odd-odd mixings.

which, together with (5.63) implies n−n±
1R +n∓

2L = 0 mod4. To be concrete, let us assume

that Ψ1± has a left-handed zero-mode: n±
1L = 0 and n±

1R = ∓1. Then eqs. (5.63) and (5.64)

imply

n∓
2R = −n mod4 , n∓

2L = −n ∓ 1 mod4 . (5.65)

The diagram in figure 5 is then

−
(

1

4

)

|λ4|2
∑

m1,l1

∑

m′
1,l′1

∫

dDk

(2π)D
G

∓(m2,l2;m′
2,l′2)

k,n∓
2

G
(m1,l1;m′

1,l′1)
k+p,n P± . (5.66)

This contains a term that depends on the 4D momentum, with the structure

kλΓλ
∑

m1,l1

∑

m′
1,l′1

[

PRδ̂(m2, l2;m
′
2, l

′
2;n

∓
2L) + PLδ̂(m2, l2;m

′
2, l

′
2;n

∓
2R)

]

δ̂(m1, l1;m
′
1, l

′
1;n)P± ,

(5.67)

but given the relations (5.65), and the comments following eq. (A.17), only the second term

gives a nonvanishing result. The terms depending on momenta along the extra dimensions

are both non-vanishing, and give rise to the following structure:

∑

m1,l1

∑

m′
1,l′1

rm2,∓l2Mm2,l2 δ̂(m2, l2;m
′
2, l

′
2;n

∓
2L)δ̂(m1, l1;m

′
1, l

′
1;n)Γ4PRP±

→ rm′,∓l′Mm′,l′Γ
4PRP± ,

∑

m1,l1

∑

m′
1,l′1

rm2,l2Mm2,l2 δ̂(m2, l2;m
′
2, l

′
2;n

∓
2R)δ̂(m1, l1;m

′
1, l

′
1;n)Γ4PLP±

→ rm,±lMm,lΓ
4PLP± .

With the help of eq. (A.17) and the relations following it, we can write the diagrams in the

form

i
|λ4|2
16π2

Γ
( ε

2

)

{

AΨpµΓµPL − BΨΓ4
(

rm′,∓l′Mm′,l′PR + rm,±lMm,lPL

)}

P± , (5.68)
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where Aψ and BΨ are given in Table 4 for a 6D chirality + fermion, and for the four allowed

values of the boundary conditions satisfied by the scalar field, n = 0, 1, 2 or 3. For a 6D

chirality − fermion, the cases n = 1 and n = 3 are interchanged. Also, when the zero mode

of Ψ1± is right-handed, we obtain eq. (5.68) with PL ↔ PR.

The Yukawa interactions induce localized operators as in eq. (5.59). When the scalar

field satisfies n = 0 boundary conditions we get r̂Ψ = r̂′Ψ, cΨ = c′Ψ, and

r̂Ψ =
5

8
× |λ4|2

16π2
Γ
( ε

2

)

, cΨ =
2

5
. (5.69)

The coefficients of the localized operators for other types of scalar boundary conditions can

be easily worked out from Table 4.

5.3 Two-point functions of scalar fields

In this section we study the new features arising in the calculation of the one-loop correc-

tions to the two-point function associated with 6D scalars. Here we encounter the most

general KK-number violating structure arising from operators localized at the three con-

ical singularities. In addition, this will serve as a warm up to study the renormalization

associated with the spinless adjoints, A±.

As is well-known, these diagrams contain quadratic divergences that tend to lift the

zero-mode to the cutoff scale. This issue only affects scalars satisfying n = 0 boundary

conditions, and we assume that a bare contribution is tuned to keep the zero-mode light,

if necessary. We are interested in the induced KK-number violating transitions that corre-

spond to operators localized at the conical singularities. Notice that for n = 1, 3, the mass

term operator

−M2Φ†Φ , (5.70)

vanishes when evaluated at the singular points (0, 0), (L,L) and (0, L), due to the vanishing

of the corresponding KK wavefunctions given in eq. (2.2). This is relevant for the spinless

adjoints, A±, which satisfy these boundary conditions, and it trivially shows that there are

no divergences corresponding to localized mass terms for these fields. For n = 2 boundary

conditions, the mass term operator (5.70) is non-vanishing at (0, L).

Here we will simply use dimensional regularization to calculate the induced localized

kinetic term operators, and will not worry about potential quadratic divergences. We show

the relevant diagrams in figure 6.

5.3.1 Gauge interactions

Let us consider first the diagrams arising from the gauge interactions. The interactions with

the spin-1 components of the 6D gauge field have expressions which are straightforward

generalizations of those applying to 4D scalars minimally coupled to gauge fields (see

figure 2). The coupling between two scalars and one gauge field induces

(b) = −
(

1

4

)

g2
4C2(Φ)δab

∑

m1,l1

∑

m′
1,l′1

∫

dDk

(2π)D
(2p − k)µ(2p − k)νG

(m1,l1;m′
1,l′1)

µν,k G
(m2,l2;m′

2,l′2)
p−k,n ,

(5.71)
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Φa Φ†
b

Φa Φ†
b

Φa Φ†
b

(a) (b) (c)

Φa Φ†
b

Φa Φ†
b

Φa Φ†
b

(d) (e) (f)

Figure 6: One-loop contribution to 〈Φ Φ†〉, where Φ is a complex scalar (represented by a dashed

line with a single arrow) satisfying any of the four types of boundary conditions, n = 0, 1, 2, 3. The

dashed lines with two arrows represent the propagation of A+.

where (T cT c)ab = C2(Φ)δab is the quadratic Casimir operator in the representation of Φ.

The coupling with two gauge bosons induces

(c) = ig2
4 C2(Φ) δab

∑

m1,l1

∫

dDk

(2π)D
ηµνG

(m1,l1;m′
1,l′1)

µν,k , (5.72)

which, as explained in subsection 5.1.1 should be contracted with external propagators to

obtain the correct KK-number violating structure.

In addition, there are diagrams arising from the gauge couplings to the spin-0 compo-

nents of the 6D gauge field. The corresponding vertices are shown in figure 7. A quartic

interaction induces

(d) = −ig2
4 C2(Φ) δab

∑

m1,l1

∫

dDk

(2π)D
G

(m1,l1;m′
1,l′1)

++,k , (5.73)

which again requires contraction with external propagators, while a trilinear interaction

Φb

Φa†

Ac
+

p1

p2

p3

= i
2
g6 (T c)ab [rm1,l1Mm1,l1 − rm2,l2Mm2,l2]

Ac
+

Φb

Ad
+

Φa†

= −

i
2
g2
6

{

T c, T d
}

ab

Figure 7: Momentum space Feynman rules for the couplings between scalars and the spinless

adjoints, A±. There is a trilinear vertex involving an incoming A+ (outgoing A−), which can be

obtained from the one shown here by rm,l → r∗m,l, where the momentum-dependent phases were

defined in eq. (2.27).
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AΦ BΦ

n = 0 n = 2 n = 0 n = 2

(b) (ξ − 3) ×











3

2

5/2

0

1/2

−1/2

(ξ + ξ2) ×











5/4

1

9/8

0

1/8

−1/8

(c) 0 0 −(3 + ξ2) ×











5/4

1

9/8

0

1/8

−1/8

(d) 0 0 −(1 + ξ) ×











−1/4

0

−1/8

0

−1/8

1/8

(e) + (f) 0 0 −1
2 ×











−7/2

−2

−11/4

0

−3/4

3/4

Table 5: Functions AΦ and BΦ, as defined via eq. (5.75), associated with the gauge contributions

to the scalar self-energies, corresponding to diagrams (b)–(f) in figure 6. We give the results for

scalars satisfying n = 0 and n = 2 boundary conditions. For n = 0, the three cases in each diagram

correspond to cases 1a, 1b and 2 of eq. (2.30), while for n = 2, they correspond to cases 1, 2a and

2b of eq. (2.32).

gives

(e) = −
(

1

4

)2

g2
4 C2(Φ) δab

∑

m1,l1

∑

m′
1,l′1

∫

dDk

(2π)D
[

r∗m,lMm,l + r∗m2,l2Mm2,l2

]

× G
(m1,l1;m′

1,l′1)
++,p−k

[

rm′
2,l′2

Mm′
2,l′2

+ rm′,l′Mm′,l′

]

G
(m2,l2;m′

2,l′2)
k,n ,(5.74)

and a second diagram (f) which is obtained from (e) by taking the complex conjugates of

all phases, rm,l → r∗m,l, and also G++ → G−−.

We wish to consider scalar fields satisfying any of the four possible boundary conditions,

n = 0, 1, 2 or 3. We start by considering the cases n = 0 or n = 2. We write the results for

diagrams (b)–(f) in the form

i
g2
4

16π2
C2(Φ) δab Γ

( ε

2

)

{

AΦp2 − BΦ

(

M2
m,l + M2

m′,l′
)}

. (5.75)

A straightforward calculation gives the scalar coefficients AΦ and BΦ as summarized in

Table 5. Adding the diagrams for the n = 0 boundary conditions we get

AΦ = (ξ − 3) ×











3

2

5/2

, BΦ = ξ ×











3/2

1

5/4

−











7/4

2

15/8

, (5.76)

where the three cases correspond to those listed in eq. (2.30).
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BΦ B′
Φ

(b) ξ ×



















1/4

0

1/8

1/8

− ξ2 ×



















5/4

1

9/8

9/8

ξ ×



















0

0

1/8

−1/8

− ξ2 ×



















0

0

1/8

−1/8

(c) (3 + ξ2) ×



















5/4

1

9/8

9/8

(3 + ξ2) ×



















0

0

1/8

−1/8

(d) −(1 + ξ) ×



















1/4

0

1/8

1/8

−(1 + ξ) ×



















0

0

1/8

−1/8

(e) + (f) −1
2 ×



















−1/2

2

3/4

3/4

−1
2 ×



















0

0

−5/4

5/4

Table 6: Functions BΦ and B′
Φ, as defined via eq. (5.78), associated with the gauge contributions

to the scalar self-energies, corresponding to diagrams (b)–(f) in figure 6, in the case where the

scalars satisfy n = 3 boundary conditions. The four lines in each diagram correspond to cases 1a,

1b, 2a and 2b of eqs. (2.30) and (2.32). For n = 1, the roles of BΦ and B′
Φ are interchanged.

For scalars satisfying n = 2 boundary conditions we get instead

AΦ = (ξ − 3) ×











0

1/2

−1/2

, BΦ = ξ ×











0

1/4

−1/4

+











0

1/8

−1/8

, (5.77)

where now the three cases correspond to those listed in eq. (2.32). Notice that, to low-

est order, the corresponding mass shifts are proportional to 2BΦ − AΦ, and that the ξ

dependence cancels out in the difference, both in eqs. (5.76) and (5.77).

It remains to consider the gauge contributions to scalars satisfying n = 1 or n = 3

boundary conditions. In these cases we write the results for diagrams (b)–(f) in the form

−i
g2
4

16π2
C2(Φ) δab Γ

( ε

2

)

Mm,lMm′,l′
{

BΦrm,lr
∗
m′,l′ + B′

Φr∗m,lrm′,l′
}

. (5.78)

Notice that there is no p2 term, as expected from the fact that the 4D-like kinetic operator

for fields satisfying these boundary conditions vanishes at the conical singularities. A

straightforward calculation gives the scalar coefficients BΦ and B′
Φ as summarized in Table 6
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for the n = 3 case. Adding the various contributions, we obtain

BΦ =



















15/4

2

23/8

23/8

, B′
Φ =



















0

0

7/8

−7/8

, (5.79)

where the four lines correspond to cases 1a, 1b, 2a and 2b in eqs. (2.30) and (2.32). We

see that the ξ-dependence cancels out.

For n = 1 boundary conditions, the roles of BΦ and B′
Φ in eq. (5.79) are interchanged.

5.3.2 Localized operators

Comparing to the general results of subsection 2.3, we see that the above expressions

correspond to localized operators as in eq. (2.22). Here we summarize the induced localized

operators in terms of the coefficients ri = r̂iL
2, ci, r′3 = r̂′3L

2 and c′3 of eq. (2.22), for the

four possible boundary conditions defining the scalar field:

• For n = 0:

r̂1 =
5

4
(ξ − 3) × g2

4

16π2
C2(Φ)Γ

( ε

2

)

, c1 =
2

5
,

r̂2 =
5

16
(2ξ − 3) × g2

4

16π2
C2(Φ)Γ

( ε

2

)

, c2 =
2

5

(2ξ + 1)

(2ξ − 3)
, (5.80)

while r̂3 = r̂′3 = 0.

• For n = 2:

c1r̂1 =
1

2
(ξ − 3) × g2

4

16π2
C2(Φ)Γ

( ε

2

)

,

c2r̂2 =
1

8
(2ξ + 1) × g2

4

16π2
C2(Φ)Γ

( ε

2

)

, (5.81)

while r̂3 = r̂′3 = 0. In this case, no operators at (0, 0) or (L,L) are generated.

• For n = 3:

r̂3 =
23

16
× g2

4

16π2
C2(Φ)Γ

( ε

2

)

, c3 =
14

23
,

c′3r̂
′
3 =

7

8
× g2

4

16π2
C2(Φ)Γ

( ε

2

)

, (5.82)

while r̂1 = r̂2 = 0. Notice that the operators associated with r′3 are generated only

at (0, L), not at (0, 0) or (L,L).

• For n = 1:

c3r̂3 =
7

8
× g2

4

16π2
C2(Φ)Γ

( ε

2

)

,

r̂′3 =
23

16
× g2

4

16π2
C2(Φ)Γ

( ε

2

)

, c′3 =
14

23
, (5.83)

while r̂1 = r̂2 = 0. Notice that the operators associated with r3 are generated only

at (0, L), not at (0, 0) or (L,L).

– 42 –



J
H
E
P
1
1
(
2
0
0
6
)
0
1
8

5.3.3 Yukawa interactions

We end this section by considering the effects of Yukawa interactions, which as explained

in eq. (5.62), involve two 6D Weyl fermions of opposite 6D chiralities. We have

(a) =

(

1

4

)

|λ4|2 δab

∑

m1,l1

∑

m′
1,l′1

∫

dDk

(2π)D
Tr

{

G
±,(m1,l1;m′

1,l′1)
k+p G

∓,(m′
2,l′2;m2,l2)

k P∓

}

, (5.84)

which can be easily evaluated using the identities (5.16) and (5.49)–(5.51) to simplify the

trace.

We restrict to the case where at least one of the 6D fermions running in the loop has

a zero-mode. If the zero-mode is left-handed the boundary conditions for the fermions in

the loop are related to those of the scalar by eqs. (5.65). Analogous relations hold if the

zero-mode is right-handed. The boundary conditions obeyed by the scalar field are labeled

by n.

Independently of the chirality of the fermion zero-mode, when n = 0 or n = 2 we can

write the result of the diagram as

i
|λ4|2
16π2

δab Γ
( ε

2

)

{

AΦp2 − BΦ

(

M2
m,l + M2

m′,l′
)}

, (5.85)

where the scalar coefficients AΦ and BΦ are given by

AΦ = 2 , BΦ = 2 , for n = 0 ,

AΦ = 0 , BΦ = 0 , for n = 2 .
(5.86)

Notice that for n = 0, this corresponds to localized operators as in eq. (2.22), with

r̂1 = r̂2 =
g2
4

16π2
C2(Φ)Γ

( ε

2

)

, c1 = c2 = 0 , (5.87)

and r̂3 = r̂′3 = 0.

When n = 1 or n = 3 the result depends on whether both 6D fermions in the loop give

rise to a 4D chiral zero-mode, or only one of them. We write the results in the form

−i
|λ4|2
16π2

δab Γ
( ε

2

)

Mm,lMm′,l′
{

BΦrm,lr
∗
m′,l′ + B′

Φr∗m,lrm′,l′
}

. (5.88)

Let us label the boundary conditions associated with the two fermions participating in

the Yukawa interaction, eq. (5.62), by n±
iL and n∓

iR, with i = 1, 2, as in subsection 5.2.3.

For n = 3, both fermions in the loop have a zero mode when either n+
1L = n−

2L = 0 or

n−
1R = n+

2R = 0. In these instances, we get

BΦ =



















1

0

1/2

1/2

, B′
Φ =



















0

0

−1/2

1/2

, for n = 3 and two zero modes , (5.89)
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where the four lines correspond to cases 1a, 1b, 2a and 2b in eqs. (2.30) and (2.32). For n =

1, the two fermions in the loop can have zero-modes simultaneously when n+
1R = n−

2R = 0

or n−
1L = n+

2L = 0. In such instances, one obtains eq. (5.89) with BΦ and B′
Φ interchanged.

The second category occurs when only one of the fermions has a zero-mode. For n = 3,

this happens when n+
1R = 0 or n−

1L = 0 or n+
2L = 0 or n−

2R = 0, while for n = 1, it happens

when n+
1L = 0 or n−

1R = 0 or n+
2R = 0 or n−

2L = 0. In all such instances, one gets the opposite

sign of the contributions when two fermion zero-modes are simultaneously present.

5.4 Two-point function of the spinless adjoints

We end our exploration of the one loop corrections in the chiral square background by

studying the two-point functions associated with the spinless adjoints, A±.

We need to consider two types of two-point functions: 〈A+A†
+〉 and 〈A+A+〉, which

together with their complex conjugates determine the structure of localized counterterms

needed to absorb the logarithmic divergences that appear at one-loop. As mentioned in

the previous section, the fact that the spinless adjoints satisfy n = 1 or n = 3 boundary

conditions ensures that no localized mass terms are generated. However, one can generate

a localized tadpole term, proportional to F45, the field strength with indices in the extra

dimensions, with a coefficient that is quadratically divergent. As shown in [12, 13], this

coefficient can be nonvanishing for U(1) factors, and depends in general on the boundary

conditions as well as on the U(1) charges of the matter fields. It was also pointed out

in the previous references that when the boundary conditions commute with the higher-

dimensional gauge symmetry, the one-loop tadpole is simply proportional to the trace of

the generators associated with the field in the loop (a fact that can be directly checked from

the Feynman rules given in Appendix B.4 for the present compactification). In particular,

for the standard model gauge group and field content all such traces vanish. Thus, such

tadpole terms do not appear in the models of Universal Extra Dimensions discussed in the

Introduction, and we concentrate on the terms quadratic in the fields in what follows.

5.4.1 Gauge interactions

We show the diagrams contributing to the two point function 〈A+A†
+〉 in figure 8, and

those contributing to 〈A+A+〉 in figure 9. We start with the diagrams in figure 8.

Diagrams (b)–(d) are trivially related to the corresponding diagrams encountered in

our study of general scalar fields in section 5.3. Diagram (b) in figure 8 is given by (1/2)2

times expression (5.71) with Gn → G++, and C2(Φ) → C2(A). Similarly, diagram (c) is

given by 1/2 times expression (5.72) with C2(Φ) → C2(A). Diagram (d) is given by 1/4 of

expression (5.73). Diagrams (e) and (f) are given by

(e) = −
(

1

4

)3 g2
4

2
C2(A) δab

∑

m1,l1

∑

m′
1,l′1

∫

dDk

(2π)D
[

r∗m1,l1Mm1,l1 + r∗m2,l2Mm2,l2

]

× G
(m1,l1;m′

1,l′1)
++,k+p

[

rm′
1,l′1

Mm′
1,l′1

+ rm′
2,l′2

Mm′
2,l′2

]

G
(m2,l2;m′

2,l′2)
++,k , (5.90)
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Aa
+ Ab

+
Aa

+ Ab
+

Aa
+ Ab

+

(a) (b) (c)

Aa
+ Ab

+
Aa

+ Ab
+

Aa
+ Ab

+

(d) (e) (f)

Aa
+ Ab

+
Aa

+ Ab
+

Aa
+ Ab

+

(g) (h) (i)

Aa
+ Ab

+
Aa

+ Ab
+

(j) (k)

Figure 8: One-loop contribution to 〈A+A†
+〉. The dashed lines with two arrows represent the

propagation of A+.

(f) = −
(

1

4

)3

g2
4 C2(A) δab

∑

m1,l1

∑

m′
1,l′1

∫

dDk

(2π)D
[rm,lMm,l + rm1,l1Mm1,l1]

× G
(m1,l1;m′

1,l′1)
−−,k+p

[

r∗m′,l′Mm′,l′ + r∗m′
1,l′1

Mm′
1,l′1

]

G
(m2,l2;m′

2,l′2)
++,k . (5.91)

Finally, there is a diagram involving the ghost fields,

(g) =

(

1

4

)2

ξ2g2
4 C2(A) δab

∑

m1,l1

∑

m′
1,l′1

rm2,l2Mm2,l2r
∗
m′

1,l′1
Mm′

1,l′1

×
∫

dDk

(2π)D
G

(m1,l1;m′
1,l′1)

ξ,k+p G
(m′

2,l′2;m2,l2)
ξ,k , (5.92)

and one involving the interaction between two gauge fields and a single spinless adjoint

given by

(h) = −
(

1

4

)2 g2
4

2
C2(A) δab

∑

m1,l1

∑

m′
1,l′1

∫

dDk

(2π)D
[rm1,l1Mm1,l1 + rm2,l2Mm2,l2]

× G
µν(m1 ,l1;m′

1,l′1)
k+p

[

r∗m′
1,l′1

Mm′
1,l′1

+ r∗m′
2,l′2

Mm′
2,l′2

]

G
(m′

2,l′2;m2,l2)
µν,k .(5.93)
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B+ B′
+

(b) 1
4ξ(1 + ξ) ×



















1/4

0

1/8

1/8

− 1
2ξ2 ×



















5/4

1

9/8

9/8

1
4ξ(1 + ξ) ×



















0

0

1/8

−1/8

− 1
2ξ2 ×



















0

0

1/8

−1/8

(c) 1
2 (3 + ξ2) ×



















5/4

1

9/8

9/8

1
2 (3 + ξ2) ×



















0

0

1/8

−1/8

(d) −1
4(1 + ξ) ×



















1/4

0

1/8

1/8

−1
4(1 + ξ) ×



















0

0

1/8

−1/8

(e) −1
8 ×



















−5

−4

−9/2

−9/2

0

(f) −1
4 ×



















−21/4

−3

−33/8

−33/8

−1
4 ×



















0

0

−1/8

1/8

(g) 1
4ξ2 ×



















−5/4

−1

−9/8

−9/8

1
4ξ2 ×



















0

0

1/8

−1/8

(h) −1
8

(

3 + ξ2
)

×



















−2

−2

−2

−2

−1
8

(

3 + ξ2
)

×



















0

0

1/2

−1/2

Table 7: Functions B+ and B′
+, as defined via eq. (5.94), associated with the gauge contributions

to the two-point function 〈A+A†
+〉, corresponding to diagrams (b)–(h) in figure 8. The four lines in

each diagram correspond to cases 1a, 1b, 2a and 2b of eqs. (2.30) and (2.32).

These last two diagrams are present to account for the would-be Goldstone modes contained

in A+ that realize the Higgs mechanism at each spin-1 KK level.

Notice that diagrams (i), (j) and (k) in figure 8, involving the propagators G+− or

G−+, are finite as a result of a cancellation between the two real degrees of freedom in A+,

so we need not consider them.

We write the results for diagrams (b)–(h) in the form

−i
g2
4

16π2
C2(A) δab Γ

( ε

2

)

Mm,lMm′,l′
{

B+rm,lr
∗
m′,l′ + B′

+r∗m,lrm′,l′
}

. (5.94)
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Notice that there is no p2 term, as expected from the fact that the 4D kinetic opera-

tor for fields satisfying n = 3 boundary conditions vanishes at the conical singularities.

A straightforward calculation gives the scalar coefficients B+ and B′
+ as summarized in

Table 7. Adding the various contributions, we obtain

B+ =











9/2

7/2

4

, B′
+ = 0 , (5.95)

where the three lines correspond to the cases listed in eq. (2.30). We see that the ξ-

dependence disappears and that B′
+ vanishes. Notice that the vanishing of B′

+ is essen-

tial to get a rotationally invariant (in the plane of the extra dimensions) structure for

the induced localized operators: a nonvanishing result would lead to operators of the

form (∂+A+)(∂−A−). B+, on the other hand, leads to localized operators of the form

(∂−A+)(∂+A−), which are rotationally invariant.

Consider now the diagrams in figure 9 for the 〈A+A+〉 two-point function. Diagram

(m) can be obtained from diagram (b) in figure 8, with the replacement G++ → −G−+, the

minus sign coming from the ordering of the 4D momenta. Diagram (n) can be obtained from

eq. (5.92) with rm2,l2 → r∗m2,l2
. Similarly, diagram (o) can be obtained from eq. (5.93) by

making the replacements rm1,l1 → r∗m1,l1
and rm2,l2 → r∗m2,l2

. Diagram (p) can be obtained

from diagram (d) in figure 8, with the replacement G++ → G−+. Finally, diagram (q) can

be obtained from eq. (5.91) by making the replacements rm,l → −r∗m,l and rm1,l1 → r∗m2,l2
.

It is easy to see that diagrams (r), (s) and (t) in figure 9 are finite as a result of a cancellation

between the two real scalar degrees of freedom in A+, and we do not consider them in the

following.

We write the results for diagrams (m)–(q) in the form

−i
g2
4

16π2
C2(A) δab Γ

( ε

2

)

r∗m,lr
∗
m′,l′Mm,lMm′,l′B̃+ . (5.96)

A straightforward calculation gives the scalar coefficients B̃+ as summarized in Table 8.

Adding the various contributions, we obtain

B̃+ =











−9/2

−7/2

−4

, (5.97)

where the three lines correspond to the cases listed in eq. (2.30). Again, the ξ dependence

cancels out, as it should. Furthermore, we see from eqs. (5.95) and (5.97) that B̃+ = −B+,

which is essential to obtain a gauge invariant structure for the induced localized operators,

as we discuss in subsection 5.4.4.

5.4.2 Fermions and spinless adjoints

Before studying the structure of localized KK-number violating terms associated with the

spinless adjoints, we compute the effect of the interactions of the spinless adjoints with
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Aa
+ Ab

+
Aa

+ Ab
+

Aa
+ Ab

+

(l) (m) (n)

Aa
+ Ab

+
Aa

+ Ab
+

Aa
+ Ab

+

(o) (p) (q)

Aa
+ Ab

+
Aa

+ Ab
+

Aa
+ Ab

+

(r) (s) (t)

Figure 9: One-loop contribution to 〈A+A+〉. The dashed lines with two arrows represent the

propagation of A+.

B̃+

(m) −1
4ξ(1 − ξ) ×











5/2

2

9/4

(p) −1
4(1 − ξ) ×











5/2

2

9/4

B̃+

(n) 1
4ξ2 ×











1

1

1

(q) 1
4 ×











−5

−3

−4

B̃+

(o) −1
8

(

3 + ξ2
)

×











7

6

13/2

Table 8: Scalar functions B̃+, as defined via eq. (5.96), associated with the gauge contributions to

the two-point function 〈A+A+〉, corresponding to diagrams (m)–(q) in figure 9. The three lines in

each diagram correspond to the cases listed in eq. (2.30).

scalar and fermionic matter. In this subsection we give the result of the fermion loops, and

in the next we consider scalar loops.

The contribution due to fermions to the two-point function 〈A+A†
+〉 is given by (see

figure 8)

(a)=−
(

1

4

)

g2
4 i2T (Ψ)δab

∑

m1,l1

∑

m′
1,l′1

∫

dDk

(2π)D
Tr

{

Γ+G
±,(m1,l1;m′

1,l′1)
k+p Γ−G

±,(m′
2,l′2;m2,l2)

k P∓

}

,

(5.98)

where Tr(T aT b) = T (Ψ)δab. Assuming that the fermion has a zero-mode (of any 4D
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chirality), we obtain

−i
g2
4

16π2
T (Ψ) δab Γ

( ε

2

)

rm,lr
∗
m′,l′Mm,lMm′,l′ B+ , (5.99)

with B+ = −2.

The fermion loop (l) in figure 9 is given by eq. (5.98) with Γ+ → Γ−. Assuming that

the fermion has a zero-mode (of any 4D chirality), we obtain

−i
g2
4

16π2
T (Ψ) δab Γ

( ε

2

)

r∗m,lr
∗
m′,l′Mm,lMm′,l′B̃+ , (5.100)

with B̃+ = 2. As for the diagrams arising from the gauge self-interactions, the fermion

loop gives B̃+ = −B+, which implies a gauge invariant counterterm.

5.4.3 Scalars and spinless adjoints

We finally consider the effect of scalar fields interacting with spinless adjoints via the ver-

tices of figure 7. As shown in figure 10, there is a diagram involving a trilinear interaction,

(u) = −
(

1

4

)2

g2
4 T (Φ) δab

∑

m1,l1

∑

m′
1,l′1

∫

dDk

(2π)D
[rm1,l1Mm1,l1 + rm2,l2Mm2,l2 ]

× G
(m1,l1;m′

1,l′1)
k+p,n

[

r∗m′
1,l′1

Mm′
1,l′1

+ r∗m′
2,l′2

Mm′
2,l′2

]

G
(m′

2,l′2;m2,l2)
k,n , (5.101)

and one involving a quartic interaction:

(v) = −ig2
4 T (Φ) δab

∑

m1,l1

∫

dDk

(2π)D
G

(m1,l1;m′
1,l′1)

k,n , (5.102)

where Tr(T aT b) = T (Φ)δab. We can write these diagrams as

−i
g2
4

16π2
T (Φ) δab Γ

( ε

2

)

Mm,lMm′,l′
{

B+rm,lr
∗
m′,l′ + B′

+r∗m,lrm′,l′
}

, (5.103)

with the scalar coefficients B+, B′
+ given in Table 9. Adding the diagrams, we get for

scalars satisfying any of the four types of boundary conditions, n = 0, 1, 2 or 3:

n=0 n=1,3 n=2

B+ =











7/4

3/2

13/8

−1/4

0

−1/8

−5/4

−3/2

−11/8

, B′
+ = 0 ,

(5.104)

(u) (v) (w)

Figure 10: One-loop contribution to 〈A+A†
+〉 and 〈A+A+〉 due to scalars interacting with the

spinless adjoints via the 6D gauge interactions of figure 7.
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B+ B′
+

n = 0 n = 1, 3 n = 2 n = 0 n = 1, 3 n = 2

(u) −1
4 ×



















−2

−2

−2

−2

0

0

0

0

2

2

2

2

−1
4 ×



















0

0

1/2

−1/2

0

0

−1/2

1/2

0

0

1/2

−1/2

(v) (−1) ×



















−5/4

−1

−9/8

−9/8

1/4

0

1/8

1/8

3/4

1

7/8

7/8

(−1) ×



















0

0

−1/8

1/8

0

0

1/8

−1/8

0

0

−1/8

1/8

Table 9: Functions B+ and B′
+, as defined via eq. (5.103), associated with the scalar contributions

to the two-point function 〈A+A†
+〉, corresponding to diagrams (u) and (v) in figure 10. We give the

results for scalars satisfying any of the four types of boundary conditions, n = 0, 1, 2 or 3. The four

lines in each diagram correspond to cases 1a, 1b, 2a and 2b of eqs. (2.30) and (2.32).

so that again the rotationally violating contribution proportional to B′
+ vanishes.

The contribution to the two-point function 〈A+A+〉 from diagram (w) in figure 10 is

given by eq. (5.101) with rm1,l1 → r∗m1,l1
and rm2,l2 → r∗m2,l2

, and the result can be written

as

−i
g2
4

16π2
T (Φ) δab Γ

( ε

2

)

r∗m,lr
∗
m′,l′Mm,lMm′,l′B̃+ , (5.105)

with B̃+ = −B+, and B+ given in eq. (5.104).

5.4.4 Localized operators

We computed in the previous subsections the contributions to the spinless adjoint two-point

functions due to the gauge self-interactions, as well as to the interactions with fermions and

scalars arising from the 6D gauge interactions. We showed that one obtains the structure

〈A(m′,l′)
+ A

(m,l)†
+ 〉 ∼ B+rm,lr

∗
m′,l′Mm,lMm′,l′ ,

〈A(m′,l′)
+ A

(m,l)
+ 〉 ∼ B̃+r∗m,lr

∗
m′,l′Mm,lMm′,l′ , (5.106)

with B̃+ = −B+. It follows from this and the hermitian conjugates of relations (5.106),

that the logarithmic divergences require the gauge invariant localized counterterm

1

4
δc+(z) ×

(

−1

2
r̂+L2 F a

45F
a
45

)

, (5.107)

where δc(z) was defined in eq. (2.21), the factor of 1/4 accounts for universal KK wave-

function enhancements, and

−1

2
F 2

45 =
1

8
F 2

+−

=
1

8
[∂+A− − ∂−A+]2 . (5.108)
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Recalling the KK decompositions Aj,k
+ (x, z) ∼ −Aj,k

+ (x)f j,k
3 (z), Aj,k

− (x, z) ∼ Aj,k
− (x)f j,k

1 (z),

and using eqs. (2.26), one can see that the tree-level contribution to 〈A(m′,l′)
+ A

(m,l)†
+ 〉 asso-

ciated with the vertex (5.107) is

− i

4
rm,lr

∗
m′,l′Mm,lMm′,l′ ×











(2 + c+) r̂+

(2 − c+) r̂+

2 r̂+

, (5.109)

where the three lines correspond to the cases listed in eq. (2.30). From this we can read

the one-loop contributions to r̂+ from the results of the previous subsections. The gauge

self-interactions, eqs. (5.94), (5.95), (5.96) and (5.97), give a contribution

r̂+ = 8 × g2
4

16π2
C2(A) Γ

( ε

2

)

, c+ =
1

4
, (5.110)

the fermions [see eqs. (5.99), and (5.100)] give

r̂+ = −4 × g2
4

16π2
T (Ψ)Γ

( ε

2

)

, c+ = 0 , (5.111)

and the scalars [see eqs. (5.103), (5.104) and (5.105)] give

r̂+ =
13

4
× g2

4

16π2
T (Φ)Γ

( ε

2

)

, c+ =
2

13
. (5.112)

The previous results for the localized operators assume that the fermion and scalar fields

include a zero-mode in their KK towers. The coefficients of the localized operators induced

by scalar fields satisfying other boundary conditions can be easily read from the results

presented in subsection 5.4.3.

6. Summary and conclusions

We considered the one-loop structure of general field theories in six dimensions, with two of

the dimensions compactified on the “chiral square” of Ref. [10]. This compactification has

a very simple geometric description: start from a square region in the plane and identify

adjacent sides of the square. This compactification to four dimensions has the desirable

property of leading to a chiral four-dimensional theory, and is therefore appropriate for

phenomenological applications. In fact, as shown in [10], the construction is equivalent to

a T 2/Z4 orbifold. The geometric construction makes it clear that there are three singular

points with a conical symmetry. Our explicit one-loop computation shows that there are

logarithmic divergences that require the introduction of counterterms precisely at these

three points. It also shows that the localized counterterms obey a rotational symmetry, as

expected from the conical nature of the singularities.

We derived the propagators for spin-0, spin-1/2 and spin-1 fields in momentum space

and showed how to take into account the “boundary conditions” that define the prop-

agation of these fields on the chiral square background. Putting the information about

– 51 –



J
H
E
P
1
1
(
2
0
0
6
)
0
1
8

the compactification in the form of the propagators permits the use of vertices that con-

serve momentum in the extra dimensions, and therefore allows us to consider arbitrary

interactions in a universal manner.

We also considered the 4D spin-0 fields that arise from the extra dimensional compo-

nents of 6D gauge fields. Their interactions among themselves and with other fermion and

scalar fields are constrained by the 6D gauge invariance. These states are characteristic of

the present class of six-dimensional theories. We find that the self-interactions give a posi-

tive mass shift, while the gauge interactions with fermions give a negative mass shift. This

is similar to their spin-1 counterparts. However, the numerical coefficients are different.

When applied to the standard model field content, one finds that the lightest KK particle

is the spinless adjoint associated with the hypercharge interactions. Thus, these scenarios

give rise to a scalar dark matter candidate, with Yukawa-like couplings determined by the

gauge interactions.

Our results can be summarized succinctly by giving the coefficients of the various

quadratic operators involving the given fields. In order to do so, we define the following

shorthand notation for the various kinetic term operators. For the 6D gauge system we

have two types of kinetic terms:

OA = −1

4
F a

µνFµνa , O45 = −1

2
F a

45F
a
45 . (6.1)

For 6D Weyl fermions, Ψ±, with a left-handed zero-mode, the kinetic terms generated at

the singularities have the form

OΨL
= iΨ±ΓµPL∂µΨ± , OM

ΨL
= iΨ±Γ±PR∂∓Ψ± + h.c. , (6.2)

while for 6D Weyl fermions with a right-handed zero-mode they have an analogous structure

with PL ↔ PR. For scalar fields there are four types of localized kinetic term operators

as shown in eq. (2.22). However, for scalars having a zero-mode, i.e. satisfying n = 0

boundary conditions, only two types of kinetic terms are generated:

OΦ = ∂µΦ†∂µΦ , OM
Φ = Φ†(∂+∂−Φ) + h.c. , (6.3)

In this case, there are also induced mass terms, Φ†Φ.

Assuming that the zero-mode fermion is left-handed, we found that the quantum effects

induce localized kinetic term operators at the points (0, 0) and (L,L), which we write as

L2

4

[

δ(x4)δ(x5) + δ(L − x4)δ(L − x5)
]

×
{

r̂A
1 OA + r̂45

1 O45

+ r̂Ψ
1 OΨL

+ r̂Ψ,M
1 OM

ΨL
+ r̂Φ

1 OΦ + r̂Φ,M
1 OM

Φ

}

,(6.4)

where, for convenience, we wrote an explicit factor of 1/4 to account for the KK wavefunc-

tion enhancements arising from eq. (2.2) evaluated at the singular points. The coefficients

of the operators at these two conical singularities are found to be identical, as required

by KK-Parity. If bare contributions at the cutoff scale Λ can be neglected, RG evolution
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induces coefficients that can be read from eqs. (5.11), (5.19), (5.40), (5.60), (5.69), (5.80),

(5.87), (5.110), (5.111) and (5.112):

r̂A
1 =

g2
4

16π2
ln

Λ2

µ2

[

−14

3
C2(A) +

2

3

∑

Ψ

T (Ψ) +
5

12

∑

Φ

T (Φ)

]

,

r̂45
1 =

g2
4

16π2
ln

Λ2

µ2

[

8C2(A) − 4
∑

Ψ

T (Ψ) +
13

4

∑

Φ

T (Φ)

]

,

r̂Ψ
1 =

1

16π2
ln

Λ2

µ2

[

−4
∑

gauge

g2
4C2(Ψ) +

5

8

∑

i

λ2
4,i

]

,

r̂Ψ,M
1 =

1

16π2
ln

Λ2

µ2

[

5

8

∑

i

λ2
4,i

]

, (6.5)

r̂Φ
1 =

1

16π2
ln

Λ2

µ2

[

−15

2

∑

gauge

g2
4C2(Φ) +

∑

i

λ2
4,i

]

,

r̂Φ,M
1 =

1

16π2
ln

Λ2

µ2

[

−45

16

∑

gauge

g2
4C2(Φ) +

∑

i

λ2
4,i

]

,

where µ is the renormalization scale, and g4 and λ4,i are the 4-dimensional gauge and

Yukawa couplings, respectively. In the equations for r̂A
1 and r̂45

1 the first sum runs over 6D

Weyl fermions, while the second runs over 6D complex scalars satisfying n = 0 boundary

conditions. C2(F ) is the Casimir eigenvalue in the representation of the fields F = Aµ,

Ψ or Φ, while Tr(T aT b) = T (F )δab, where T a are the generators in the representation of

the field F . The terms proportional to C2(A) include the contributions of the complete

6D gauge multiplet, i.e. both the 4D spin-1 components, as well as the spinless adjoints.

The sums in the expression for r̂Ψ
1 and rΨ,M

1 run over its gauge interactions, as well as the

Yukawa interactions with complex scalars satisfying n = 0 boundary conditions. We also

derived relations for scalars satisfying more general boundary conditions in Section 5.3.

In addition, one finds operators at a third singular point with coordinates (0, L):

L2

4
δ(x4)δ(L − x5)

(

r̂A
2 OA + r̂45

2 O45 + r̂Ψ
2 OΨL

+ r̂Ψ,M
2 OM

ΨL
+ r̂Φ

2 OΦ + r̂Φ,M
2 OM

Φ

)

,(6.6)

where the coefficients are in general independent from those in eq. (6.4). The contribution

due to physics below the cutoff scale Λ was found to be

r̂A
2 =

g2
4

16π2
ln

Λ2

µ2

[

−2C2(A) +
1

6

∑

Φ

T (Φ)

]

,

r̂45
2 =

g2
4

16π2
ln

Λ2

µ2

[

2C2(A) +
1

2

∑

Φ

T (Φ)

]

,

r̂Ψ
2 =

1

16π2
ln

Λ2

µ2

[

−2
∑

gauge

g2
4C2(Ψ) +

1

4

∑

i

λ2
4,i

]

,
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r̂Ψ,M
2 =

1

16π2
ln

Λ2

µ2

[

1

4

∑

i

λ2
4,i

]

. (6.7)

r̂Φ
2 =

1

16π2
ln

Λ2

µ2

[

−3
∑

gauge

g2
4C2(Φ)

]

,

r̂Φ,M
2 =

1

16π2
ln

Λ2

µ2

[

−5

8

∑

gauge

g2
4C2(Φ)

]

.

It should be noted that the above coefficients can be obtained directly from the com-

putation in the gauge eq. (4.2) with ξ = −3, or, after an appropriate field redefinition, from

the induced operators obtained for other choices of the gauge fixing parameter (the expres-

sions for the various two-point functions for arbitrary values of the gauge-fixing parameter

are given in the main text). The ξ = −3 gauge is a convenient gauge since the induced

operators that have been computed here have automatically a gauge invariant structure.

Of course, physical quantities that may be calculated from the two point functions, such

as the mass shifts, are ξ-independent. See the discussion in subsection 5.1.4.

Although in this paper we did not compute explicitly the renormalization of KK-

number violating gauge interactions, we expect that the result of such a computation in

ξ = −3 gauge should give rise to operators with the precise coefficients necessary to provide

the gauge invariant completions of the kinetic operators in eqs. (6.1)–(6.3), according to

the standard prescription ∂M → DM = ∂M − iAM . Thus, the operators given in eqs. (6.4),

(6.5), (6.6) and (6.7) can be regarded as providing a very convenient summary of the one-

loop results computed in this paper, allowing not only a straightforward determination

of the induced mass-shifts, but also of several KK-number violating gauge interactions of

interest.

For example, the leading corrections to the gauge boson masses can be obtained from

MA(j,k) = Mj,k

(

1 − 1

2
δZA(j,k)

)

, (6.8)

where δZA(j,k) is the wavefunction renormalization of A
(j,k)
µ coming from the localized op-

erator OA in eq. (6.1), and the tree-level mass of the (j, k)-th level is given by Mj,k =
√

j2 + k2/R. The spinless adjoints, on the other hand, receive only a “mass” renormal-

ization associated with O45 in eq. (6.1), since the 4D kinetic term operators vanish at

the singular points. In fact, O45, when expanded in KK modes, contains precisely the

gauge invariant linear combination of A4 and A5 that is orthogonal to the eaten would-be

Nambu-Goldstone modes. Thus, only this physical degree of freedom receives a mass shift

from the localized operators, given by

M
A

(j,k)
SA

= Mj,k

(

1 +
1

2
δZ

A
(j,k)
SA

)

. (6.9)

For fermions, one finds to first order in perturbation theory,

MΨ(j,k) = Mj,k

(

1 − 1

2
δZΨ(j,k) +

1

2
δZ ′

Ψ(j,k)

)

, (6.10)
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where δZΨ(j,k) is the localized 4D kinetic term renormalization constant, and δZ ′
Ψ(j,k) the

renormalization of the kinetic terms with transverse derivatives, i.e. mass renormalization

in a KK language. Notice that only one of the 4D chiralities receives a wavefunction

renormalization due to localized operators. For scalars, one similarly has

M2
Φ(j,k) = 4m2

0 + M2
j,k

(

1 − δZΦ(j,k) + δZ ′
Φ(j,k)

)

, (6.11)

where m0 is the mass of the zero-mode, and the factor of four arises from the normalization

of the heavy KK states relative to the zero-mode.

For KK-parity even states, the δZ ’s are related to the coefficients of the localized

kinetic term operators of eqs. (6.4) and (6.6) by

δZA(j,k) = 2 r̂A
1 + r̂A

2 , δZ
A

(j,k)
SA

= 2 r̂45
1 + r̂45

2 ,

δZΨ(j,k) = 2 r̂Ψ
1 + r̂Ψ

2 , δZΦ(j,k) = 2 r̂Φ
1 + r̂Φ

2 ,

δZ ′
Ψ(j,k) = 2Re

(

2 r̂Ψ,M
1 + r̂Ψ,M

2

)

, δZ ′
Φ(j,k) = 2Re

(

2 r̂Φ,M
1 + r̂Φ,M

2

)

.

(6.12)

For KK-parity odd states, the δZ ’s are as in eqs. (6.12) except that the r2’s do not

contribute, since the corresponding KK wavefunctions vanish at (x4, x5) = (0, L). The

explicit mass formulae for both KK-parity even and KK-parity odd states were given in

eqs. (1.9)–(1.16) of the Introduction, where we also included the results for scalars satisfying

boundary conditions other than n = 0.

As mentioned before, the localized operators summarized in eqs. (6.4)–(6.7) contain

much more information than the mass shifts. They also encode information about KK

transitions, as well as new interactions with the massive gauge fields. As an important

example of KK-number violating couplings, we consider those between zero-mode fermions,

ψ, and massive KK-parity even gauge bosons, A
(j,k)
µ . We write the effective 4D coupling

as

g4C
ΨA
j,k ψγµA(j,k)

µ ψ , (6.13)

where the dimensionless parameters CΨA
j,k are determined, to lowest order in perturbation

theory, by the coefficients defined in eqs. (6.5) and (6.7), as

CΨA
j,k = −1

2
δZA(j,k) +

1

2
δZΨ(j,k) − 1

2
δZ ′

Ψ(j,k) , (6.14)

where now

δZA(j,k) = 2 r̂A
2 + (−1)j r̂A

1 ,

δZΨ(j,k) = 2 r̂Ψ
2 + (−1)j r̂Ψ

1 , (6.15)

δZ ′
Ψ(j,k) = 2Re

[

2 r̂Ψ,M
2 + (−1)j r̂Ψ,M

1

]

.

Notice that when j is even, the KK-number violating couplings, CΨA
j,k , are simply related

to the mass shifts of the heavy states involved. However, when j is odd, CΨA
j,k depends on

a different linear combination of r̂1 and r̂2 than the one appearing in the mass shifts, e.g.

eq. (6.12). These couplings may play a crucial role in discriminating these scenarios from

other kinds of new physics [15].
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A. Kaluza-Klein number versus momentum space representations

In this Appendix we derive in detail the general relation between the KK-number and

momentum space representations of a generic two-point function. We derive results that

are sufficiently general to cover the cases arising in the treatment of fermion and gauge

fields. In particular, we allow for two-point functions connecting fields that satisfy different

boundary conditions, labeled by integers n1 and n2.

The procedure is straightforward: starting from the propagator in configuration space,

G(p; z, z′), satisfying the appropriate boundary conditions, one can either project on the

KK wavefunctions, f (j,k)(z), given in eq. (2.2), or on the momentum space wavefunctions,

h(m,l)(z), given in eq. (2.3). However, one must exert some care since the two sets of

functions form complete sets on different spacetime regions, and the quantum numbers

(j, k) and (m, l) cover different ranges.

A.1 Diagonal propagators

We start with propagators that preserve Kaluza-Klein number and postpone the analysis of

Kaluza-Klein number violation to the next subsection. Using eq. (2.12) we can derive, for

any two integers n1, n2 ∈ {0, 1, 2, 3} and arbitrary expansion coefficients g̃j,k, the identity

1

4L2

∫ L

−L
d2z d2z′

[

h(m,l)(z)
]∗





1

4L2

∑

j,k

g̃j,k f (j,k)
n1

(z)
[

f (j,k)
n2

(z′)
]∗



 h(m′,l′)(z′)

=
∑

j,k

1

2 [1 + δj,0δk,0]
δ̂(m, l; j, k;n1) g̃j,k

1

2
[

1 + δm′,0δl′,0

] δ̂(j, k;m′, l′;n2)

=
1

4

[

g̃m,l + ei(θ1−θ2)g̃−l,m + e2i(θ1−θ2)g̃−m,−l + e3i(θ1−θ2)g̃l,−m

] δ̂(m, l;m′, l′;n2)

[1 + δm,0δl,0]
2 , (A.1)

where θi = niπ/2. The significance of the “tilde” notation in g̃j,k will become clear in the

following paragraphs.

In eq. (A.1) it was necessary to assume that the sums over j and k run unrestricted

over all integer values. To use this identity, the simplest way to proceed is to extend the

restricted sums one naturally encounters when working in the KK-number representation

[see comments after eq. (2.3)] to the whole range of integers. This can be achieved by

noting that the KK wavefunctions defined in eq. (2.2) satisfy the relations

f
(−j,k)
n (z) = eiθf

(k,j)
n (z) , f

(−j,−k)
n (z) = e2iθf

(j,k)
n (z) , f

(j,−k)
n (z) = e3iθf

(k,j)
n (z) . (A.2)

Therefore, for arbitrary coefficients gj,k, one can write

∑

j,k

′
gj,k f (j,k)

n1
(z)

[

f (j,k)
n2

(z′)
]∗

=
1

4

∑

j,k

g̃j,k f (j,k)
n1

(z)
[

f j,k
n2

(z′)
]∗

, (A.3)
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where, following our convention, the ′ superscript in the sum on the left-hand-side indicates

that it runs over the restricted range j > 0, k ≥ 0 and j = k = 0, while the sum on the

right-hand-side stands for a double sum over all integers. The “tilded” quantities g̃j,k are

defined in terms of gj,k as follows:

g̃j,k =



























gj,k for j > 0, k ≥ 0

e−i(θ1−θ2)gk,−j for j ≤ 0, k > 0

e−2i(θ1−θ2)g−j,−k for j < 0, k ≤ 0

e−3i(θ1−θ2)g−k,j for j ≥ 0, k < 0

, (A.4)

and g̃0,0 = 4g0,0. Then, using eqs. (A.1), (A.3) and the definition (A.4) one obtains

1

4L2

∫ L

−L
d2z d2z′

[

h(m,l)(z)
]∗





1

L2

∑

j,k

′
gj,k f (j,k)

n1
(z)

[

f (j,k)
n2

(z′)
]∗



h(m′,l′)(z′)

= g̃m,l
δ̂(m, l;m′, l′;n2)

[1 + δm,0δl,0]
2 .(A.5)

It follows that for a propagator with the general representation in KK-number space,

Gn1,n2(p; z; z′) =
1

L2

∑

j,k

′
gj,k f (j,k)

n1
(z)

[

f (j,k)
n2

(z′)
]∗

, (A.6)

and using eq. (A.5), as well as the completeness relation

1

4L2

∑

m,l

h(m,l)(z)
[

h(m,l)(z′)
]∗

= δ(2)(z − z′) , (A.7)

we can write

Gn1,n2(p; z; z′) =

∫ L

−L
d2y d2y′δ(2)(z − y)Gn1,n2(p; y; y′)δ(2)(y′ − z′)

=
1

4L2

∑

m,l

∑

m′,l′

G(m,l;m′,l′)
p,n1,n2

h(m,l)(z)
[

h(m′,l′)(z′)
]∗

, (A.8)

with G
(m,l;m′,l′)
p,n1,n2 , as defined in eq. (2.11), explicitly given by

G(m,l;m′,l′)
p,n1,n2

= g̃m,l
δ̂(m, l;m′, l′;n2)

[1 + δm,0δl,0]
2 = g̃m′,l′

δ̂(m, l;m′, l′;n1)

[1 + δm,0δl,0]
2 . (A.9)

To obtain the second equality we used the relations

g̃l′,−m′ = ei(θ1−θ2)g̃m′,l′ , g̃−m′,−l′ = e2i(θ1−θ2)g̃m′,l′ , g̃−l′,m′ = e3i(θ1−θ2)g̃m′,l′ ,

(A.10)

which follow from the definitions (A.4).

Specializing eq (A.9) to the scalar case with n1 = n2 = n, eqs. (2.4) and (2.5), one

obtains the scalar result of eq. (2.17). Recall that g̃0,0 = 4g0,0, as stated after eq. (A.4).
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A.2 Kaluza-Klein mixing

Now we consider two-point functions with an arbitrary KK-number violating structure, as

in eq. (2.18):

G(p; z; z′) =
1

L2

∑

j,k

′∑

j′,k′

′
g(j,k);(j′,k′) f (j,k)

n1
(z)

[

f (j′,k′)
n2

(z′)
]∗

=
1

4L2

∑

m,l

∑

m′,l′

G(m,l;m′,l′)
n1,n2

h(m,l)(z)
[

h(m′,l′)(z′)
]∗

. (A.11)

As was done in eq. (A.3), we may extend the definition of the coefficients g(j,k);(j′,k′) in such

a way that the summations over KK number can be taken over an unrestricted range: 7

∑

j,k

′∑

j′,k′

′
g(j,k);(j′,k′) f (j,k)

n1
(z)

[

f (j′,k′)
n2

(z′)
]∗

=
1

16

∑

j,k

∑

j′,k′

g̃(j,k);(j′,k′) f (j,k)
n1

(z)
[

f (j′,k′)
n2

(z′)
]∗

.

(A.12)

In order to write in a compact form the required extension g̃(j,k);(j′,k′), we define a

“reordering” function

R(j, k) =



























(j, k) if (j, k) ∈ S0 = {j > 0, k ≥ 0}
(k,−j) if (j, k) ∈ S1 = {j ≤ 0, k > 0}
(−j,−k) if (j, k) ∈ S2 = {j < 0, k ≤ 0}
(−k, j) if (j, k) ∈ S3 = {j ≥ 0, k < 0}

, (A.13)

and also P (j, k) = ω if (j, k) ∈ Sω, giving the quadrant to which (j, k) belongs. In terms

of these auxiliary functions the “tilde” operation is given by

g̃(j,k);(j′,k′) = gR(j,k);R(j′k′)e
−iP (j,k)θ1+iP (j′,k′)θ2 , if (j, k) & (j′, k′) 6= (0, 0)

g̃(j,k);(0,0) = 4gR(j,k);(0,0)e
−iP (j,k)θ1 , if (j, k) 6= (0, 0)

g̃(0,0);(j′,k′) = 4g(0,0);R(j′k′)e
iP (j′,k′)θ2 , if (j′, k′) 6= (0, 0)

g̃(0,0);(0,0) = 16g(0,0);(0,0) ,

(A.14)

where θi = niπ/2.

To relate the expansion coefficients g(j,k);(j′,k′) and G
(m,l;m′,l′)
n1,n2 (KK-number and mo-

mentum bases, respectively) in the KK-number violating case, we can project eq. (A.11) on

momentum space, as in eq. (2.11). With the help of eqs. (2.12) and (2.14), and following

a procedure similar to the one used to derive eqs. (A.1) and (A.5), we find

G(m,l;m′,l′)
n1,n2

=
1

16

∑

j,k

∑

j′,k′

1

[1 + δj,0δk,0]
δ̂(m, l; j, k;n1) g̃(j,k);(j′,k′) ×

× 1

[1 + δm′,0δl′,0]
δ̂(j′, k′;m′, l′;n2)

=
1

[1 + δm,0δl,0][1 + δm′,0δl′,0]
g̃(m,l);(m′,l′) . (A.15)

7Although g̃(j,k);(j′,k′) depends on n1 and n2, we do not indicate this dependence to avoid further

notational cluttering.
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Note that eq. (A.9) is a subcase of the previous relation.

Using the fact that g(j,k);(j′,k′) and g̃(j,k);(j′,k′) coincide when j > 0, k ≥ 0, one imme-

diately obtains eq. (2.19). eqs. (2.20), involving zero-modes, are also immediately derived

from eq. (A.15) and the definitions (A.14) and (A.13).

A.3 Useful identities for the generalized functions δ̂(m, l;m′, l′;n)

Here we record some useful relations involving the δ̂-function introduced in eq. (2.14):

δ̂(m1, l1;m2, l2;n) = δ̂(m2, l2;m1, l1;−n) ,

δ̂(−m1,−l1;m2, l2;n) = δ̂(m1, l1;−m2,−l2;n)

= δ̂(m1, l1;m2, l2;−n) ,

δ̂(m1, l1; l2,−m2;n) = e−inπ/2δ̂(m1, l1;m2, l2;n) , (A.16)

δ̂(m1, l1;−m2,−l2;n) = e−inπ δ̂(m1, l1;m2, l2;n) ,

δ̂(m1, l1;−l2,m2;n) = e−3inπ/2δ̂(m1, l1;m2, l2;n) .

We also note that the products of generalized δ̂’s that appear in the diagrams (see figure 1)

can be simplified using

∑

m′
1,l′1

δ̂(m1, l1;m
′
1, l

′
1;n1)δ̂(m

′
2, l

′
2;m2, l2;n2) = δ̂(m, l;m′, l′;n1 − n2) (A.17)

+ eiθ1 δ̂(m − m1 − l1, l − l1 + m1;m
′, l′;n1 − n2)

+ e2iθ1 δ̂(m − 2m1, l − 2l1;m
′, l′;n1 − n2)

+ e3iθ1 δ̂1(m − m1 + l1, l − l1 − m1;m
′, l′;n1 − n2) ,

where θ1 = n1π/2, and m2 = m1 − m, l2 = l1 − l, m′
2 = m′

1 − m′ and l′2 = l′1 − l′.

One can check that the last three terms in eq. (A.17), when summed over (m1, l1)

vanish, except when KK-parity is preserved and

• n1 = n2 = 0:

∑

m1,l1





∑

m′
1,l′1

δ̂(m1, l1;m
′
1, l

′
1; 0)δ̂(m

′
2, l

′
2;m2, l2; 0) − δ̂(m, l;m′, l′; 0)



 = 4 ×











3

2

5/2

,

• n1 = n2 = ±1:

∑

m1,l1





∑

m′

1
,l′

1

δ̂(m1, l1; m
′
1, l

′
1;±1)δ̂(m′

2, l
′
2; m2, l2;±1) − δ̂(m, l; m′, l′; 0)



 = 4 ×







−1

0

−1/2

,

• n1 = n2 = 2:

∑

m1,l1





∑

m′
1,l′1

δ̂(m1, l1;m
′
1, l

′
1; 2)δ̂(m

′
2, l

′
2;m2, l2; 2) − δ̂(m, l;m′, l′; 0)



 = 4 ×











−1

−2

−3/2

,
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where the three cases in each of the bullets are as defined in eq. (2.30), which we quote

here again for convenience:

Case 1a: (−1)m+l = (−1)m
′+l′ = +1, m − m′ even,

Case 1b: (−1)m+l = (−1)m
′+l′ = +1, m − m′ odd,

Case 2: (−1)m+l = (−1)m
′+l′ = −1,

(A.18)

or

• n1 = 0, n2 = 2 or n1 = 2, n2 = 0:

∑

m1,l1





∑

m′
1,l′1

δ̂(m1, l1;m
′
1, l

′
1; 0)δ̂(m

′
2, l

′
2;m2, l2; 2) − δ̂(m, l;m′, l′; 2)



 = 4 ×











0

1/2

−1/2

,

where in this latter bullet the three cases are different from the previous ones, as given in

eq. (2.32):

Case 1: (−1)m+l = (−1)m
′+l′ = +1,

Case 2a: (−1)m+l = (−1)m
′+l′ = −1, m − m′ even,

Case 2b: (−1)m+l = (−1)m
′+l′ = −1, m − m′ odd.

(A.19)

B. Tree-level propagators on the chiral square

In this Appendix we derive the propagators for fields of various spins on the “chiral square”

background of [10, 11]. We follow the general strategy of deriving the propagator in the

mixed position and momentum space representation, making use of the KK wavefunctions

in eq. (2.2) to take care of the appropriate boundary conditions, after which it is a simple

matter to find the corresponding momentum space expressions using the formulae derived

in Appendix A.

B.1 Chiral fermions

We start by computing the fermion propagator in mixed position and momentum space.

We need to solve

i
(

−iΓµpµ + Γ4∂4 + Γ5∂5

)

G±(p; z; z′) = iP∓δ(2)(z − z′) , (B.1)

where the ± superscript in G±(p; z; z′) refers to the two possible 6D chiralities defined by

P± =
1

2

(

1 ± Γ
)

, (B.2)

and the six-dimensional chirality operator is Γ = Γ0Γ1Γ2Γ3Γ4Γ5. A convenient representa-

tion of the 8 × 8 Γ-matrices is

Γµ = γµ ⊗ σ0 , Γ4,5 = iγ5 ⊗ σ1,2 , (B.3)
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where γµ are the 4D γ-matrices, γ5 = iγ0γ1γ2γ3 is the 4D chirality operator, σ0 is the

2 × 2 unit matrix and σi are the Pauli matrices. In this representation, Γ = −γ5 ⊗ σ3.

Each 6D chiral fermion contains both left- and right-handed 4-dimensional chiralities.

Since the folded square identifications require them to obey different boundary conditions,

it is useful to treat them separately by using the 8 × 8 4D chirality projectors

PL,R =
1

2

(

1 ∓ iΓ0Γ1Γ2Γ3
)

. (B.4)

Defining

G±
LL(p; z, z′) = PL G±(p; z, z′)PR =

∫

d4x eipx〈Ψ±L
(x, z)Ψ±L

(0, z′)〉 ,

G±
RL(p; z, z′) = PR G±(p; z, z′)PR =

∫

d4x eipx〈Ψ±R
(x, z)Ψ±L

(0, z′)〉 ,

G±
LR(p; z, z′) = PL G±(p; z, z′)PL =

∫

d4x eipx〈Ψ±L
(x, z)Ψ±R

(0, z′)〉 , (B.5)

G±
RR(p; z, z′) = PR G±(p; z, z′)PL =

∫

d4x eipx〈Ψ±R
(x, z)Ψ±R

(0, z′)〉 ,

we can derive the equations obeyed by G±
LL, G±

RL, etc. as follows. Applying the differential

operator i
(

−iΓµpµ + Γ4∂4 + Γ5∂5

)

to eq. (B.1), and then projecting by PL on the left and

by PR on the right, we can obtain a differential equation for G±
LL:

(

p2 + ∂2
4 + ∂2

5

)

G±
LL(p; z, z′) = iPLP±Γµpµδ(2)(z − z′) , (B.6)

where we used the fact that Γ4 and Γ5 commute with PL,R. We see that this equation is

solved by

G±
LL(p; z, z′) = PLP±ΓµpµGn±

L
(p; z, z′) , (B.7)

where Gn±
L
(p; z, z′) is the 6-dimensional scalar propagator satisfying eq. (2.7). It is given

explicitly by

Gn±
L
(p; z, z′) =

1

L2

∑

j,k

′
gj,k
S f

(j,k)

n±
L

(z)
[

f
(j,k)

n±
L

(z′)
]∗

, (B.8)

where gj,k
S is the 4-dimensional scalar propagator defined in eq. (2.5). The integers n±

L

label the boundary conditions obeyed by the left-handed components of the 6D fermion in

question.

We can find G±
RL from the solution G±

LL above by projecting directly eq. (B.1),

PL · · ·PR, to obtain

ΓµpµG±
RL + i

(

Γ4∂4 + Γ5∂5

)

G±
LL = 0 . (B.9)

Using the identities eqs. (5.16), we find

G±
RL = − i

p2
pµΓµΓ4∂±G±

LL

= PRP±Γ4
(

i∂±Gn±
L

)

, (B.10)
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where ∂± were defined in eq. (2.23), and Gn±
L

is given in eq. (B.8).

Proceeding in an analogous fashion (i.e. projecting by PR on the left and by PL on the

right) we see that G±
RR is given by

G±
RR(p; z, z′) = PRP±ΓµpµGn±

R
(p; z, z′) , (B.11)

where Gn±
R
(p; z, z′) is given by eq. (B.8) with n±

L → n±
R, and also that G±

LR is given by

G±
LR = PLP±Γ4

(

i∂∓Gn±
R

)

. (B.12)

The integers n±
L and n±

R associated with a given 6D fermion are related by eq. (3.2). Using

eqs. (2.26) and (B.8) we can easily calculate the partial derivatives needed in eqs. (B.10)

and (B.12):

i ∂±Gn(p; z, z′) = − 1

L2

∑

j,k

′
rj,±kMj,k gj,k

S f
(j,k)
n∓1 (z)

[

f (j,k)
n (z′)

]∗

, (B.13)

where the phases rj,k were defined in eq. (2.27).

Putting the results (B.7), (B.10), (B.11) and (B.12) together, we see that the fermion

propagator has the representation

G±
LL(p; z, z′) = PLP±

1

L2

∑

j,k

′
Γµpµ gj,k

S

[

f
(j,k)

n±
L

(z)
] [

f
(j,k)

n±
L

(z′)
]∗

,

G±
RL(p; z, z′) = −PRP±

1

L2

∑

j,k

′
Γ4Mj,k gj,k

S

[

rj,±kf
(j,k)

n±
R

(z)
] [

f
(j,k)

n±
L

(z′)
]∗

,

G±
LR(p; z, z′) = −PLP±

1

L2

∑

j,k

′
Γ4Mj,k gj,k

S

[

f
(j,k)

n±
L

(z)
] [

rj,±kf
(j,k)

n±
R

(z′)
]∗

, (B.14)

G±
RR(p; z, z′) = PRP±

1

L2

∑

j,k

′
Γµpµ gj,k

S

[

rj,±kf
(j,k)

n±
R

(z)
] [

rj,±kf
(j,k)

n±
R

(z′)
]∗

,

where n±
L and n±

R are related as in eq. (3.2).

We may now project eqs. (B.14) on momentum space, as in eq. (2.11). Using eqs. (A.4)

and (A.5), we obtain

G
±,(m,l;m′,l′)
LL,p = PLP±Γµpµ gm,l

S δ̂(m, l;m′, l′;n±
L ) ,

G
±,(m,l;m′,l′)
RL,p = −PRP±Γ4rm,±lMm,l g

m,l
S δ̂(m, l;m′, l′;n±

L ) ,

G
±,(m,l;m′,l′)
LR,p = −PLP±Γ4rm,∓lMm,l g

m,l
S δ̂(m, l;m′, l′;n±

R) , (B.15)

G
±,(m,l;m′,l′)
RR,p = PRP±Γµpµ gm,l

S δ̂(m, l;m′, l′;n±
R) .

Note that by using the relations (3.2) the “tilde” operation defined in eq. (A.4) simplifies

considerably, and there is no need to distinguish among the four possible sign assignments

of the momenta m, l.

By adding the four results in eq. (B.15), and using again the identities (5.16), we can

write the fermion propagator in the more compact form given in eq. (3.3). Recall that the

extra-dimensional momenta with lower indices are given by p4 = −m/R and p5 = −l/R.
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B.2 Gauge fields: the spin-1 components

After integration by parts, the terms involving Aµ in eq. (4.1), with the gauge fixing

eq. (4.2), can be written as

−1

2
Aµ

[

(

p2 + ∂2
4 + ∂2

5

)

ηµν −
(

1 − 1

ξ

)

pµpν

]

Aν , (B.16)

where we went to the momentum space associated with the non-compact dimensions.

The spin-1 propagator in the mixed representation is defined by

[

(p2 + ∂2
4 + ∂2

5)ηµλ −
(

1 − 1

ξ

)

pµpλ

]

Gλν(p; z; z′) = −i δν
µδ(2)(z − z′) , (B.17)

and the solution satisfying the boundary conditions is

Gµν(p; z; z′) =
1

L2

∑

j,k

′
gj,k
µν f

(j,k)
0 (z)

[

f
(j,k)
0 (z′)

]∗

, (B.18)

with gj,k
µν as given in eq. (4.5).

Going to momentum space in the compactified dimensions, as in eq. (2.11), and using

eq. (A.9) with n1 = n2 = 0, we can immediately derive eq. (4.4).

B.3 Gauge fields: the spin-0 components

In this subsection, we concentrate on the slightly trickier issues associated with the scalar

degrees of freedom contained in the six-dimensional gauge field, AM . Up to surface terms

that do not contribute as a result of the boundary conditions discussed in Ref. [11], the

terms in eq. (4.1) [with the gauge fixing eq. (4.2)] quadratic in A4, A5 can be written as

L ⊃ 1

2

∑

i,j=4,5

Ai
[

(p2 + ∂2
4 + ∂2

5)δij − (1 − ξ)∂i∂j

]

Aj

=
1

4
(A∗

+ , A∗
−)

(

p2 + 1
2(1 + ξ)∂+∂− −1

2(1 − ξ)∂2
+

−1
2(1 − ξ)∂2

− p2 + 1
2(1 + ξ)∂+∂−

)(

A+

A−

)

, (B.19)

where ∂± were defined in eq. (2.23) and we wrote the second line in the A± basis as

defined in eq. (4.3). The fields A± are convenient since they satisfy well defined boundary

conditions [11]:

A±(xµ; z) = ∓ 1

L

∑

j,k

′
A

(j,k)
± (xµ)f

(j,k)
3,1 (z) . (B.20)

We define the propagator for the A± system by

1

2

(

p2 + 1
2(1 + ξ)∂+∂− −1

2(1 − ξ)∂2
+

−1
2(1 − ξ)∂2

− p2 + 1
2(1 + ξ)∂+∂−

)(

G++ G+−

G−+ G−−

)

= i δ(2)(z − z′) . (B.21)
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To find the solution to eq. (B.21) we make the following ansatz

G++(p; z; z′) =
1

L2

∑

j,k

′
gj,k
++ f

(j,k)
3 (z)

[

f
(j,k)
3 (z′)

]∗

,

G+−(p; z; z′) =
1

L2

∑

j,k

′
gj,k
+− f

(j,k)
3 (z)

[

f
(j,k)
1 (z′)

]∗

,

G−+(p; z; z′) =
1

L2

∑

j,k

′
gj,k
−+ f

(j,k)
1 (z)

[

f
(j,k)
3 (z′)

]∗

, (B.22)

G−−(p; z; z′) =
1

L2

∑

j,k

′
gj,k
−− f

(j,k)
1 (z)

[

f
(j,k)
1 (z′)

]∗

,

which satisfies the boundary conditions implied by eq. (B.20). If we further use eq. (2.26)

it is easy to see that the ansatz (B.22) solves eq. (B.21) provided

1

2

(

p2 − 1
2(1 + ξ)M2

j,k
1
2(1 − ξ)r2

j,kM
2
j,k

1
2(1 − ξ)r2

j,−kM
2
j,k p2 − 1

2(1 + ξ)M2
j,k

)(

gj,k
++ gj,k

+−

gj,k
−+ gj,k

−−

)

= i

(

1 0

0 1

)

. (B.23)

The solution to this system is

(

gj,k
++ gj,k

+−

gj,k
−+ gj,k

−−

)

=
2i

(p2 − M2
j,k)(p

2 − ξM2
j,k)

(

p2 − 1
2(1 + ξ)M2

j,k −1
2(1 − ξ)r2

j,kM
2
j,k

−1
2(1 − ξ)r2

j,−kM
2
j,k p2 − 1

2(1 + ξ)M2
j,k

)

=





gj,k
h + gj,k

φ −r2
j,k

(

gj,k
h − gj,k

φ

)

−r2
j,−k

(

gj,k
h − gj,k

φ

)

gj,k
h + gj,k

φ



 (B.24)

=

(

rj,k rj,k

−r∗j,k r∗j,k

)





gj,k
h 0

0 gj,k
φ





(

r∗j,k −rj,k

r∗j,k rj,k

)

,

where we defined

gj,k
h =

i

p2 − M2
j,k

, gj,k
φ =

i

p2 − ξM2
j,k

. (B.25)

eqs. (B.22), (B.24) and (B.25) completely specify the propagator (in mixed posi-

tion/momentum space) associated with the two degrees of freedom A4 and A5.

However, one must be careful on how the above propagator, defined as the inverse of

the quadratic operator in eq. (B.19), should be used, since one must impose the constraint

A+ = A†
−. Starting with the path integral, one can see that the relation between the

various components G++, G+−, G−+ and G−− defined in eq. (B.22) and the tree-level

two-point functions that appear in the Feynman rules are

∫

d4x eipx〈A+(x, z)A†
+(0, z′)〉 =

1

2

[

G++(p; z, z′) + G−−(p; z′, z)
]

,
∫

d4x eipx〈A+(x, z)A+(0, z′)〉 =
1

2

[

G+−(p; z, z′) + G+−(p; z′, z)
]

,
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∫

d4x eipx〈A†
+(x, z)A†

+(0, z′)〉 =
1

2

[

G−+(p; z, z′) + G−+(p; z′, z)
]

, (B.26)
∫

d4x eipx〈A†
+(x, z)A+(0, z′)〉 =

1

2

[

G−−(p; z, z′) + G++(p; z′, z)
]

.

Here we wrote all correlators in terms of A+ by using A− = A†
+. The last two relations are

simply the complex conjugates of the first two. Projecting, for example, the second relation

on the momentum space wavefunctions (2.3), one gets (we indicate only the dependence

on the extra dimensional momenta)

〈Am,l
+ Am′,l′

+ 〉 =
1

2

[

G
(m,l;m′,l′)
+− + G

(−m′,−l′;−m,−l)
+−

]

=
1

2

[

g̃m,l
+− δ̂(m, l;m′, l′; 1) + g̃−m,−l

+− δ̂(−m,−l;−m′,−l′; 3)
]

=
1

2

[

g̃m,l
+− + g̃−m,−l

+−

]

δ̂(m, l;m′, l′; 1) , (B.27)

where we used eq. (A.9). The remaining relations in eq. (B.26) can be similarly expressed

in terms of

G
(m,l;m′,l′)
++ =

(

gm,l
h + gm,l

φ

)

δ̂(m, l;m′, l′; 3) ,

G
(m,l;m′,l′)
+− = −r2

m,l

(

gm,l
h − gm,l

φ

)

δ̂(m, l;m′, l′; 1) ,

G
(m,l;m′,l′)
−+ = −r∗2m,l

(

gm,l
h − gm,l

φ

)

δ̂(m, l;m′, l′; 3) , (B.28)

G
(m,l;m′,l′)
−− =

(

gm,l
h + gm,l

φ

)

δ̂(m, l;m′, l′; 1) ,

which follow from eq. (A.9), noting that from the definition of g̃m,l
+−, eq. (A.4) with n1 = 3

and n2 = 1, and the explicit expression for gm,l
+− in eq. (B.24), one finds g̃m,l

+− = gm,l
+− and

similarly g̃m,l
−+ = gm,l

−+, g̃m,l
++ = gm,l

++ and g̃m,l
−− = gm,l

−−. In eq. (B.28) we also used the definitions

(B.25).

B.4 Feynman rules for gauge interactions

We finally present the Feynman rules in momentum space for the interactions among

fermions and gauge fields in six dimensions. These can be read directly from the vertices

derived in [11], and we simply present them diagramaticaly in figures 11 and 12.
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Figure 11: Feynman rules in the 6D gauge sector, including the additional scalar degrees of

freedom. The dashed lines with the arrow represent the propagation of A+. For the interaction of

two fermions or two ghosts with an outgoing A+ there is a corresponding vertex with an incoming
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